1. Epidemiology and Global Health
Download icon

Opportunities for improved surveillance and control of dengue from age-specific case data

  1. Isabel Rodriguez-Barraquer  Is a corresponding author
  2. Henrik Salje
  3. Derek A Cummings
  1. University of California, San Francisco, United States
  2. Institut Pasteur, France
  3. University of Florida, United States
Research Article
  • Cited 9
  • Views 1,714
  • Annotations
Cite this article as: eLife 2019;8:e45474 doi: 10.7554/eLife.45474

Abstract

One of the challenges faced by global disease surveillance efforts is the lack of comparability across systems. Reporting commonly focuses on overall incidence, despite differences in surveillance quality between and within countries. For most immunizing infections, the age distribution of incident cases provides a more robust picture of trends in transmission. We present a framework to estimate transmission intensity for dengue virus from age-specific incidence data, and apply it to 359 administrative units in Thailand, Colombia, Brazil and Mexico. Our estimates correlate well with those derived from seroprevalence data (the gold standard), capture the expected spatial heterogeneity in risk, and correlate with known environmental drivers of transmission. We show how this approach could be used to guide the implementation of control strategies such as vaccination. Since age-specific counts are routinely collected by many surveillance systems, they represent a unique opportunity to further our understanding of disease burden and risk for many diseases.

Data availability

The code to implement the model described in our study is available at https://github.com/isabelrodbar/dengue_foi. The case data used for the analyses is publicly available and can be accessed through the following links links: Brazil- http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/cnv/mruf.def; Thailand - http://www.boe.moph.go.th/boedb/surdata/index.php; Colombia - http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Paginas/vigilancia-rutinaria.aspxand https://www.sispro.gov.co/Pages/Home.aspx; Mexico - http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html.

Article and author information

Author details

  1. Isabel Rodriguez-Barraquer

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    For correspondence
    Isabel.Rodriguez@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6784-1021
  2. Henrik Salje

    Mathematical Modelling of Infectious Diseases, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3626-4254
  3. Derek A Cummings

    Department of Biology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01AI114703-01)

  • Derek A Cummings

European Research Council (804744)

  • Henrik Salje

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jos WM van der Meer, Radboud University Medical Centre, Netherlands

Publication history

  1. Received: January 24, 2019
  2. Accepted: May 21, 2019
  3. Accepted Manuscript published: May 23, 2019 (version 1)
  4. Version of Record published: June 17, 2019 (version 2)

Copyright

© 2019, Rodriguez-Barraquer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,714
    Page views
  • 251
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    Alan E Mast et al.
    Research Article Updated

    Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein–kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients. While transcripts for several coagulation proteins were increased, those encoding tissue factor, the protein that initiates coagulation and whose expression is frequently increased in inflammatory disorders, were not increased in BALF from COVID-19 patients. Our analysis implicates enhanced propagation of coagulation and decreased fibrinolysis as drivers of the coagulopathy in the lungs of COVID-19 patients.

    1. Epidemiology and Global Health
    2. Medicine
    Jackie Knee et al.
    Research Article

    We conducted a controlled before-and-after trial to evaluate the impact of an onsite urban sanitation intervention on the prevalence of enteric infection, soil transmitted helminth re-infection, and diarrhea among children in Maputo, Mozambique. A non-governmental organization replaced existing poor-quality latrines with pour-flush toilets with septic tanks serving household clusters. We enrolled children aged 1-48 months at baseline and measured outcomes before and 12 and 24 months after the intervention, with concurrent measurement among children in a comparable control arm. Despite nearly exclusive use, we found no evidence that intervention affected the prevalence of any measured outcome after 12 or 24 months of exposure. Among children born into study sites after intervention, we observed a reduced prevalence of Trichuris and Shigella infection relative to the same age group at baseline (<2 years old). Protection from birth may be important to reduce exposure to and infection with enteric pathogens in this setting.