Sonic hedgehog signaling in astrocytes mediates cell-type-specific synaptic organization

  1. Steven A Hill
  2. Andrew S Blaeser
  3. Austin A Coley
  4. Yajun Xie
  5. Katherine A Shepard
  6. Corey C Harwell
  7. Wen-Jun Gao
  8. A Denise R Garcia  Is a corresponding author
  1. Drexel University, United States
  2. Drexel University College of Medicine, United States
  3. Harvard Medical School, United States

Abstract

Astrocytes have emerged as integral partners with neurons in regulating synapse formation and function, but the mechanisms that mediate these interactions are not well understood. Here, we show that Sonic hedgehog (Shh) signaling in mature astrocytes is required for establishing structural organization and remodeling of cortical synapses in a cell type-specific manner. In the postnatal cortex, Shh signaling is active in a subpopulation of mature astrocytes localized primarily in deep cortical layers. Selective disruption of Shh signaling in astrocytes produces a dramatic increase in synapse number specifically on layer V apical dendrites that emerges during adolescence and persists into adulthood. Dynamic turnover of dendritic spines is impaired in mutant mice and is accompanied by an increase in neuronal excitability and a reduction of the glial-specific, inward-rectifying K+ channel Kir4.1. These data identify a critical role for Shh signaling in astrocyte-mediated modulation of neuronal activity required for sculpting synapses.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Steven A Hill

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew S Blaeser

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Austin A Coley

    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yajun Xie

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine A Shepard

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Corey C Harwell

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wen-Jun Gao

    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. A Denise R Garcia

    Department of Biology, Drexel University, Philadelphia, United States
    For correspondence
    adg82@drexel.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-3543

Funding

National Institute of Neurological Disorders and Stroke (1R01NS096100)

  • A Denise R Garcia

Louis Perry Jones (Postdoctoral Fellowship)

  • Yajun Xie

National Institute of Mental Health (7K01MH097957)

  • A Denise R Garcia

National Institute of Mental Health (5R21MH110724)

  • A Denise R Garcia

PA Department of Health, CURE

  • Wen-Jun Gao
  • A Denise R Garcia

National Institute of Neurological Disorders and Stroke (F99NS105185)

  • Austin A Coley

National Institute of Mental Health (R01MH085666)

  • Wen-Jun Gao

National Institute of Neurological Disorders and Stroke (K01NS089720)

  • Corey C Harwell

National Institute of Neurological Disorders and Stroke (R01NS102228)

  • Corey C Harwell

Genise Goldenson (Junior Faculty Award)

  • Corey C Harwell

Alice and Joseph Brooks Fund (Postdoctoral Fellowship)

  • Yajun Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20476) of Drexel University. All surgery was performed under isoflurane or ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2019, Hill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,222
    views
  • 675
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven A Hill
  2. Andrew S Blaeser
  3. Austin A Coley
  4. Yajun Xie
  5. Katherine A Shepard
  6. Corey C Harwell
  7. Wen-Jun Gao
  8. A Denise R Garcia
(2019)
Sonic hedgehog signaling in astrocytes mediates cell-type-specific synaptic organization
eLife 8:e45545.
https://doi.org/10.7554/eLife.45545

Share this article

https://doi.org/10.7554/eLife.45545

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Timothy J Abreo, Emma C Thompson ... Edward C Cooper
    Research Article

    KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. Kcnq2G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

    1. Neuroscience
    Livio Oboti, Federico Pedraja ... Rüdiger Krahe
    Research Article

    Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric ‘vocabulary’, made by individually variable and sex-specific electric signals. These are mainly characterized by brief frequency modulations of the oscillating dipole moment continuously generated by their electric organ, and are known as chirps. Different types of chirps are believed to convey specific and behaviorally salient information, serving as behavioral readouts for different internal states during behavioral observations. Despite the success of this model in neuroethology over the past seven decades, the code to decipher their electric communication remains unknown. To this aim, in this study we re-evaluate the correlations between signals and behavior offering an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps. By uncovering correlations among chirping, electric field geometry, and detectability in enriched environments, we present evidence for a previously unexplored role of chirps as specialized self-directed signals, enhancing conspecific electrolocation during social encounters.