Abstract
Sensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former via a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they preceded the action-related transition - thus, the same perturbation impacted behavior or not, depending on the transition latency in that particular trial. Our results suggest a distributed attractor network model of taste processing, and a dynamical role for cortex in driving motor behavior.
Article and author information
Author details
Funding
NIH Office of the Director (R01 DC006666-00)
- Donald B Katz
National Science Foundation (IBN170002)
- Donald B Katz
Howard Hughes Medical Institute (International Student Research Fellowship)
- Narendra Mukherjee
NIH Office of the Director (R01 DC007703-06)
- Donald B Katz
National Science Foundation (IBN180002)
- Donald B Katz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with National Institute of Health guidelines and methods were approved in advance by the Brandeis University Institutional Animal Care and Use Committee in protocol numbers 15011 and 19002.
Reviewing Editor
- Arianna Maffei, Stony Brook University, United States
Publication history
- Received: February 10, 2019
- Accepted: June 21, 2019
- Accepted Manuscript published: June 24, 2019 (version 1)
- Version of Record published: July 12, 2019 (version 2)
Copyright
© 2019, Mukherjee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,171
- Page views
-
- 144
- Downloads
-
- 8
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.