Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics

  1. Narendra Mukherjee
  2. Joseph Wachutka
  3. Donald B Katz  Is a corresponding author
  1. Brandeis University, United States

Abstract

Sensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former via a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they preceded the action-related transition - thus, the same perturbation impacted behavior or not, depending on the transition latency in that particular trial. Our results suggest a distributed attractor network model of taste processing, and a dynamical role for cortex in driving motor behavior.

Data availability

We have structured our electrophysiology datasets in a hierarchical data format (HDF5) and are hosting the files on a university-wide network share managed by Library and Technology Services (LTS) at Brandeis University. These HDF5 files contain our electrophysiology recordings, sorted spikes, single-neuron and population-level analyses (and associated plots and results). These files are prohibitively large to be hosted on a general-purpose fileshare platform - we request anyone interested in our datasets to contact the corresponding author, Donald Katz (dbkatz@brandeis.edu) who can put them in touch with LTS in order to create a guest account at Brandeis through which they can securely access our datasets (hosted on the katz-lab share at files.brandeis.edu).

Article and author information

Author details

  1. Narendra Mukherjee

    Program in Neuroscience, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3808-2622
  2. Joseph Wachutka

    Program in Neuroscience, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Donald B Katz

    Department Of Psychology, Brandeis University, Waltham, United States
    For correspondence
    dbkatz@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-6063

Funding

NIH Office of the Director (R01 DC006666-00)

  • Donald B Katz

National Science Foundation (IBN170002)

  • Donald B Katz

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Narendra Mukherjee

NIH Office of the Director (R01 DC007703-06)

  • Donald B Katz

National Science Foundation (IBN180002)

  • Donald B Katz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arianna Maffei, Stony Brook University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with National Institute of Health guidelines and methods were approved in advance by the Brandeis University Institutional Animal Care and Use Committee in protocol numbers 15011 and 19002.

Version history

  1. Received: February 10, 2019
  2. Accepted: June 21, 2019
  3. Accepted Manuscript published: June 24, 2019 (version 1)
  4. Version of Record published: July 12, 2019 (version 2)

Copyright

© 2019, Mukherjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,851
    views
  • 237
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Narendra Mukherjee
  2. Joseph Wachutka
  3. Donald B Katz
(2019)
Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics
eLife 8:e45968.
https://doi.org/10.7554/eLife.45968

Share this article

https://doi.org/10.7554/eLife.45968

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.