Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis

Abstract

Skin vasculature cross-talking with hair follicle stem cells (HFSCs) is poorly understood. Skin vasculature undergoes dramatic remodeling during adult mouse hair cycle. Specifically, a horizontal plexus under the secondary hair germ (HPuHG) transiently neighbors the HFSC activation zone during the quiescence phase (telogen). Increased density of HPuHG can be induced by reciprocal mutations in the epithelium (Runx1) and endothelium (Alk1) in adult mice, and is accompanied by prolonged HFSC quiescence and by delayed entry and progression into the hair growth phase (anagen). Suggestively, skin vasculature produces BMP4, a well-established HFSC quiescence-inducing factor, thus contributing to a proliferation-inhibitory environment near the HFSC. Conversely, the HFSC activator Runx1 regulates secreted proteins with previously demonstrated roles in vasculature remodeling. We suggest a working model in which coordinated remodeling and molecular cross-talking of the adult epithelial and endothelial skin compartments modulate timing of HFSC activation from quiescence for proper tissue homeostasis of adult skin.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Kefei Nina Li

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Prachi Jain

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine Hua He

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Flora Chae Eun

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sangjo Kang

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tudorita Tumbar

    Molecular Biology and Genetics, Cornell University, Ithaca, Ithaca, United States
    For correspondence
    tt252@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2273-1889

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (RO1 AR070157)

  • Tudorita Tumbar

NYSTEM (DOH01-C30293GG-3450000)

  • Prachi Jain

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR073806)

  • Tudorita Tumbar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Ethics

Animal experimentation: Mouse work followed the Cornell University Institutional Animal Care and Use Committee guidelines. IACUC protocol # 2007-0125.

Version history

  1. Received: February 10, 2019
  2. Accepted: July 25, 2019
  3. Accepted Manuscript published: July 25, 2019 (version 1)
  4. Version of Record published: August 6, 2019 (version 2)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,908
    views
  • 615
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kefei Nina Li
  2. Prachi Jain
  3. Catherine Hua He
  4. Flora Chae Eun
  5. Sangjo Kang
  6. Tudorita Tumbar
(2019)
Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis
eLife 8:e45977.
https://doi.org/10.7554/eLife.45977

Share this article

https://doi.org/10.7554/eLife.45977

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs) (satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNAseq to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article Updated

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.