Multi-phosphorylation reaction and clustering tune Pom1 gradient mid-cell levels according to cell size

  1. Veneta Gerganova
  2. Charlotte Floderer
  3. Anna Archetti
  4. Laetitia Michon
  5. Lina Carlini
  6. Thais Reichler
  7. Suliana Manley  Is a corresponding author
  8. Sophie G Martin  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
  3. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Protein concentration gradients pattern developing organisms and single cells. In Schizosaccharomyces pombe rod-shaped cells, Pom1 kinase forms gradients with maxima at cell poles. Pom1 controls the timing of mitotic entry by inhibiting Cdr2, which forms stable membrane-associated nodes at mid-cell. Pom1 gradients rely on membrane association regulated by a phosphorylation-dephosphorylation cycle and lateral diffusion modulated by clustering. Using quantitative PALM imaging, we find individual Pom1 molecules bind the membrane too transiently to diffuse from pole to mid-cell. Instead we propose they exchange within longer-lived clusters forming the functional gradient unit. An allelic series blocking auto-phosphorylation shows multi-phosphorylation shapes and buffers the gradient to control mid-cell levels, which represent the critical Cdr2-regulating pool. TIRF imaging of this cortical pool demonstrates more Pom1 overlaps with Cdr2 in short than long cells, consistent with Pom1 inhibition of Cdr2 decreasing with cell growth. Thus, the gradients modulate Pom1 mid-cell levels according to cell size.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Veneta Gerganova

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotte Floderer

    Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Archetti

    Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9049-3176
  4. Laetitia Michon

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Lina Carlini

    Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Thais Reichler

    Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Suliana Manley

    Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    suliana.manley@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4755-4778
  8. Sophie G Martin

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    For correspondence
    Sophie.Martin@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5317-2557

Funding

Swiss National Science Foundation (CRSII3_160728)

  • Suliana Manley
  • Sophie G Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mohan K Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Received: February 11, 2019
  2. Accepted: May 2, 2019
  3. Accepted Manuscript published: May 3, 2019 (version 1)
  4. Version of Record published: June 7, 2019 (version 2)

Copyright

© 2019, Gerganova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,603
    views
  • 266
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Veneta Gerganova
  2. Charlotte Floderer
  3. Anna Archetti
  4. Laetitia Michon
  5. Lina Carlini
  6. Thais Reichler
  7. Suliana Manley
  8. Sophie G Martin
(2019)
Multi-phosphorylation reaction and clustering tune Pom1 gradient mid-cell levels according to cell size
eLife 8:e45983.
https://doi.org/10.7554/eLife.45983

Share this article

https://doi.org/10.7554/eLife.45983

Further reading

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.