Structural plasticity of dendritic secretory compartments during LTP-induced synaptogenesis

  1. Yelena D Kulik
  2. Deborah J Watson
  3. Guan Cao
  4. Masaaki Kuwajima
  5. Kristen M Harris  Is a corresponding author
  1. The University of Texas at Austin, United States

Abstract

Long-term potentiation (LTP), an increase in synaptic efficacy following high-frequency stimulation, is widely considered a mechanism of learning. LTP involves local remodeling of dendritic spines and synapses. Smooth endoplasmic reticulum (SER) and endosomal compartments could provide local stores of membrane and proteins, bypassing the distant Golgi apparatus. To test this hypothesis, effects of LTP were compared to control stimulation in rat hippocampal area CA1 at postnatal day 15 (P15). By two hours, small spines lacking SER increased after LTP, whereas large spines did not change in frequency, size, or SER content. Total SER volume decreased after LTP consistent with transfer of membrane to the added spines. Shaft SER remained more abundant in spiny than aspiny dendritic regions, apparently supporting the added spines. Recycling endosomes were elevated specifically in small spines after LTP. These findings suggest local secretory trafficking contributes to LTP-induced synaptogenesis and primes the new spines for future plasticity.

Data availability

The relevant image series files and numerical data have been provided. In addition, the program Reconstruct, is freely available from synapses.clm.utexas.edu, and can be used to image and visualize the raw trace files. We have provided the raw images, Reconstruct trace files, and analytical tables in the public domain at Texas Data Repository: DOI: https://doi.org/10.18738/T8/5TX9YA.

The following data sets were generated

Article and author information

Author details

  1. Yelena D Kulik

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Deborah J Watson

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guan Cao

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6211-5872
  4. Masaaki Kuwajima

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1478-3726
  5. Kristen M Harris

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    For correspondence
    kmh2249@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1943-4744

Funding

National Institutes of Health (NS21184)

  • Kristen M Harris

National Institutes of Health (R01NS074644)

  • Kristen M Harris

National Institutes of Health (R01MH095980)

  • Kristen M Harris

National Institutes of Health (R01MH104319)

  • Kristen M Harris

National Science Foundation (NeuroNex 1707356)

  • Kristen M Harris

National Institutes of Health (F32 MH096459)

  • Deborah J Watson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the University of Texas at Austin Institutional Animal Care and Use Committee and were in compliance with NIH requirements for humane animal care and use. Protocol number (06062801). All rats were of comparable features indicative of health at the time they were taken for experimentation.

Reviewing Editor

  1. Moritz Helmstaedter, Max Planck Institute for Brain Research, Germany

Publication history

  1. Received: February 24, 2019
  2. Accepted: August 20, 2019
  3. Accepted Manuscript published: August 21, 2019 (version 1)
  4. Version of Record published: September 5, 2019 (version 2)

Copyright

© 2019, Kulik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,090
    Page views
  • 367
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yelena D Kulik
  2. Deborah J Watson
  3. Guan Cao
  4. Masaaki Kuwajima
  5. Kristen M Harris
(2019)
Structural plasticity of dendritic secretory compartments during LTP-induced synaptogenesis
eLife 8:e46356.
https://doi.org/10.7554/eLife.46356

Further reading

    1. Neuroscience
    Brian D Mueller, Sean A Merrill ... Erik M Jorgensen
    Research Article Updated

    Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.

    1. Cell Biology
    2. Neuroscience
    Yu Wang, Meghan Lee Arnold ... Barth D Grant
    Research Article Updated

    Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.