1. Neuroscience
Download icon

Imaging neuropeptide release at synapses with a genetically engineered reporter

  1. Keke Ding
  2. Yifu Han
  3. Taylor W Seid
  4. Christopher Buser
  5. Tomomi Karigo
  6. Shishuo Zhang
  7. Dion K Dickman
  8. David J Anderson  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Southern California, United States
  3. Oak Crest Institute of Science, United States
Tools and Resources
  • Cited 4
  • Views 6,748
  • Annotations
Cite this article as: eLife 2019;8:e46421 doi: 10.7554/eLife.46421

Abstract

Research on neuropeptide function has advanced rapidly, yet there is still no spatio-temporally resolved method to measure the release of neuropeptides in vivo. Here we introduce Neuropeptide Release Reporters (NPRRs): novel genetically-encoded sensors with high temporal resolution and genetic specificity. Using the Drosophila larval neuromuscular junction (NMJ) as a model, we provide evidence that NPRRs recapitulate the trafficking and packaging of native neuropeptides, and report stimulation-evoked neuropeptide release events as real-time changes in fluorescence intensity, with sub-second temporal resolution.

Article and author information

Author details

  1. Keke Ding

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5261-4843
  2. Yifu Han

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taylor W Seid

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Buser

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4379-3878
  5. Tomomi Karigo

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shishuo Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dion K Dickman

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1884-284X
  8. David J Anderson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    wuwei@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6175-3872

Funding

National Institutes of Health (R21EY026432)

  • David J Anderson

National Institutes of Health (R01DA031389)

  • David J Anderson

National Institutes of Health (NS091546)

  • Dion K Dickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Publication history

  1. Received: February 27, 2019
  2. Accepted: June 25, 2019
  3. Accepted Manuscript published: June 26, 2019 (version 1)
  4. Version of Record published: July 4, 2019 (version 2)
  5. Version of Record updated: December 11, 2019 (version 3)

Copyright

© 2019, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,748
    Page views
  • 1,146
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Reeba Susan Jacob et al.
    Short Report Updated

    The Parkinson’s disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn’s function(s) at the plasma membrane.