Imaging neuropeptide release at synapses with a genetically engineered reporter

  1. Keke Ding
  2. Yifu Han
  3. Taylor W Seid
  4. Christopher Buser
  5. Tomomi Karigo
  6. Shishuo Zhang
  7. Dion K Dickman
  8. David J Anderson  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Southern California, United States
  3. Oak Crest Institute of Science, United States

Abstract

Research on neuropeptide function has advanced rapidly, yet there is still no spatio-temporally resolved method to measure the release of neuropeptides in vivo. Here we introduce Neuropeptide Release Reporters (NPRRs): novel genetically-encoded sensors with high temporal resolution and genetic specificity. Using the Drosophila larval neuromuscular junction (NMJ) as a model, we provide evidence that NPRRs recapitulate the trafficking and packaging of native neuropeptides, and report stimulation-evoked neuropeptide release events as real-time changes in fluorescence intensity, with sub-second temporal resolution.

Data availability

Source data of EM for Figure 1 and 3. Codes used for Figure 2 and 3.

Article and author information

Author details

  1. Keke Ding

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5261-4843
  2. Yifu Han

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taylor W Seid

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Buser

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4379-3878
  5. Tomomi Karigo

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shishuo Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dion K Dickman

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1884-284X
  8. David J Anderson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    wuwei@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6175-3872

Funding

National Institutes of Health (R21EY026432)

  • David J Anderson

National Institutes of Health (R01DA031389)

  • David J Anderson

National Institutes of Health (NS091546)

  • Dion K Dickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: February 27, 2019
  2. Accepted: June 25, 2019
  3. Accepted Manuscript published: June 26, 2019 (version 1)
  4. Version of Record published: July 4, 2019 (version 2)
  5. Version of Record updated: December 11, 2019 (version 3)

Copyright

© 2019, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,592
    views
  • 1,409
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keke Ding
  2. Yifu Han
  3. Taylor W Seid
  4. Christopher Buser
  5. Tomomi Karigo
  6. Shishuo Zhang
  7. Dion K Dickman
  8. David J Anderson
(2019)
Imaging neuropeptide release at synapses with a genetically engineered reporter
eLife 8:e46421.
https://doi.org/10.7554/eLife.46421

Share this article

https://doi.org/10.7554/eLife.46421

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.