1. Structural Biology and Molecular Biophysics
Download icon

Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations

  1. László Csanády  Is a corresponding author
  2. Beáta Töröcsik
  1. Semmelweis University, Hungary
Research Article
  • Cited 8
  • Views 1,713
  • Annotations
Cite this article as: eLife 2019;8:e46450 doi: 10.7554/eLife.46450


The devastating inherited disease cystic fibrosis (CF) is caused by mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel. The recent approval of the CFTR potentiator drug ivacaftor (Vx-770) for the treatment of CF patients has marked the advent of causative CF therapy. Currently, thousands of patients are being treated with the drug, and its molecular mechanism of action is under intensive investigation. Here we determine the solubility profile and true stimulatory potency of Vx-770 towards wild-type (WT) and mutant human CFTR channels in cell-free patches of membrane. We find that its aqueous solubility is ~200-fold lower (~60 nanomolar), whereas the potency of its stimulatory effect is >100-fold higher, than reported, and is unexpectedly fully reversible. Strong, but greatly delayed, channel activation by picomolar Vx-770 identifies multiple sequential slow steps in the activation pathway. These findings provide solid guidelines for the design of in vitro studies using Vx-770.

Article and author information

Author details

  1. László Csanády

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    For correspondence
    Competing interests
    László Csanády, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6547-5889
  2. Beáta Töröcsik

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.


Cystic Fibrosis Foundation (CSANAD17G0)

  • László Csanády

Magyar Tudományos Akadémia (Lendület grant LP2017-14/2017)

  • László Csanády

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Semmelweis University (last approved 06-30-2016, expiration 06-30-2021).

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Publication history

  1. Received: February 27, 2019
  2. Accepted: June 14, 2019
  3. Accepted Manuscript published: June 17, 2019 (version 1)
  4. Version of Record published: June 26, 2019 (version 2)
  5. Version of Record updated: July 1, 2019 (version 3)


© 2019, Csanády & Töröcsik

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,713
    Page views
  • 228
  • 8

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Fangyu Liu et al.
    Research Article Updated

    The ATP-binding cassette (ABC) transporter family contains thousands of members with diverse functions. Movement of the substrate, powered by ATP hydrolysis, can be outward (export) or inward (import). ABCA4 is a eukaryotic importer transporting retinal to the cytosol to enter the visual cycle. It also removes toxic retinoids from the disc lumen. Mutations in ABCA4 cause impaired vision or blindness. Despite decades of clinical, biochemical, and animal model studies, the molecular mechanism of ABCA4 is unknown. Here, we report the structures of human ABCA4 in two conformations. In the absence of ATP, ABCA4 adopts an outward-facing conformation, poised to recruit substrate. The presence of ATP induces large conformational changes that could lead to substrate release. These structures provide a molecular basis to understand many disease-causing mutations and a rational guide for new experiments to uncover how ABCA4 recruits, flips, and releases retinoids.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Manoj K Rathinaswamy et al.
    Research Article

    Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110g) playing key roles in immune signalling. p110g is a key factor in inflammatory diseases, and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall this work provides unique insights into regulatory mechanisms that control PI3Kg kinase activity, and shows a framework for the design of PI3K isoform and mutant selective inhibitors.