Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations

  1. László Csanády  Is a corresponding author
  2. Beáta Töröcsik
  1. Semmelweis University, Hungary

Abstract

The devastating inherited disease cystic fibrosis (CF) is caused by mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel. The recent approval of the CFTR potentiator drug ivacaftor (Vx-770) for the treatment of CF patients has marked the advent of causative CF therapy. Currently, thousands of patients are being treated with the drug, and its molecular mechanism of action is under intensive investigation. Here we determine the solubility profile and true stimulatory potency of Vx-770 towards wild-type (WT) and mutant human CFTR channels in cell-free patches of membrane. We find that its aqueous solubility is ~200-fold lower (~60 nanomolar), whereas the potency of its stimulatory effect is >100-fold higher, than reported, and is unexpectedly fully reversible. Strong, but greatly delayed, channel activation by picomolar Vx-770 identifies multiple sequential slow steps in the activation pathway. These findings provide solid guidelines for the design of in vitro studies using Vx-770.

Data availability

All data generated or analyzed during this study are included in the manuscript or can be visualized in the figures.

Article and author information

Author details

  1. László Csanády

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    For correspondence
    csanady.laszlo@med.semmelweis-univ.hu
    Competing interests
    László Csanády, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6547-5889
  2. Beáta Töröcsik

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.

Funding

Cystic Fibrosis Foundation (CSANAD17G0)

  • László Csanády

Magyar Tudományos Akadémia (Lendület grant LP2017-14/2017)

  • László Csanády

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Semmelweis University (last approved 06-30-2016, expiration 06-30-2021).

Copyright

© 2019, Csanády & Töröcsik

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,706
    views
  • 313
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. László Csanády
  2. Beáta Töröcsik
(2019)
Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations
eLife 8:e46450.
https://doi.org/10.7554/eLife.46450

Share this article

https://doi.org/10.7554/eLife.46450

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.