Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals

Abstract

The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.

Data availability

All data generated or analyses during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Travis D Goode

    Department of Psychological and Brain Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1432-8894
  2. Reed L Ressler

    Department of Psychological and Brain Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0514-8269
  3. Gillian M Acca

    Department of Psychological and Brain Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivia W Miles

    Department of Psychological and Brain Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen Maren

    Department of Psychological and Brain Sciences, Texas A&M University, College Station, United States
    For correspondence
    maren@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9342-7411

Funding

National Institute of Mental Health (R01MH065961)

  • Stephen Maren

McKnight Endowment Fund for Neuroscience (Memory and Cognitive Disorders Award)

  • Stephen Maren

Brain and Behavior Research Foundation (Distinguished Investigator Grant)

  • Stephen Maren

National Institute of Mental Health (R01MH117852)

  • Stephen Maren

National Institute of Mental Health (F31MH107113)

  • Travis D Goode

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2015-005) of Texas A&M University. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 2, 2019
  2. Accepted: March 28, 2019
  3. Accepted Manuscript published: April 4, 2019 (version 1)
  4. Version of Record published: April 9, 2019 (version 2)

Copyright

© 2019, Goode et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,539
    views
  • 651
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Travis D Goode
  2. Reed L Ressler
  3. Gillian M Acca
  4. Olivia W Miles
  5. Stephen Maren
(2019)
Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals
eLife 8:e46525.
https://doi.org/10.7554/eLife.46525

Share this article

https://doi.org/10.7554/eLife.46525

Further reading

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.