Critical role for piccolo in synaptic vesicle retrieval
Abstract
Loss of function of the active zone protein Piccolo has recently been linked to a disease, Pontocerebellar Hypoplasia type 3, which causes brain atrophy. Here, we address how Piccolo inactivation in rat neurons adversely affects synaptic function and thus may contribute to neuronal loss. Our analysis shows that Piccolo is critical for the recycling and maintenance of synaptic vesicles. We find that boutons lacking Piccolo have deficits in the Rab5/EEA1 dependent formation of early endosomes and thus the recycling of SVs. Mechanistically, impaired Rab5 function was caused by reduced synaptic recruitment of Pra1, known to interact selectively with the zinc finger domains of Piccolo. Importantly, over-expression of GTPase deficient Rab5 or the Znf1 domain of Piccolo restores the size and recycling of SV pools. These data provide a molecular link between the active zone and endosome sorting at synapses providing hints to how Piccolo contributes to developmental and psychiatric disorders.
Data availability
All data generated or analysed during this study are included in the manuscript.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (SFB958)
- Craig Curtis Garner
European Research Council (ERC Advanced)
- Christian Rosenmund
Norwegian Cancer Society (early carrier development grant)
- Kay Oliver Schink
National Institute of Health (R01HD053889 and R01HD061575)
- F Kent Hamra
National Center for Research Resources (R24RR03232601)
- F Kent Hamra
The Office of the Director (R24OD011108)
- F Kent Hamra
European Research Council (ERC Advanced,ERC-2011-AdG 294742)
- Zsuzsanna Izsvák
Bundesministerium für Bildung und Forschung (NGFN-2,NGFNplus - ENGINE)
- Zsuzsanna Izsvák
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures for experiments involving animals, were approved by the animal welfare committee of Charité Medical University and the Berlin state government (protocol number: T0036/14, O0208/16).
Copyright
© 2019, Ackermann et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,664
- views
-
- 498
- downloads
-
- 35
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.
-
- Neuroscience
The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.