1. Cell Biology
Download icon

Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors

  1. Eszter Zavodszky
  2. Ramanujan S Hegde  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
Research Article
  • Cited 17
  • Views 3,330
  • Annotations
Cite this article as: eLife 2019;8:e46740 doi: 10.7554/eLife.46740

Abstract

We have used misfolded prion protein (PrP*) as a model to investigate how mammalian cells recognize and degrade misfolded GPI-anchored proteins. While most misfolded membrane proteins are degraded by proteasomes, misfolded GPI-anchored proteins are primarily degraded in lysosomes. Quantitative flow cytometry analysis showed that at least 85% of PrP* molecules transiently access the plasma membrane en route to lysosomes. Unexpectedly, time-resolved quantitative proteomics revealed a remarkably invariant PrP* interactome during its trafficking from the ER to lysosomes. Hence, PrP* arrives at the plasma membrane in complex with ER-derived chaperones and cargo receptors. These interaction partners were critical for rapid endocytosis because a GPI-anchored protein induced to misfold at the cell surface was not recognized effectively for degradation. Thus, resident ER factors have post-ER itineraries that not only shield misfolded GPI-anchored proteins during their trafficking, but also provide a quality control cue at the cell surface for endocytic routing to lysosomes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data for Fig. 5E has been provided as a figure supplement.

Article and author information

Author details

  1. Eszter Zavodszky

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4123-8758
  2. Ramanujan S Hegde

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    rhegde@mrc-lmb.cam.ac.uk
    Competing interests
    Ramanujan S Hegde, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8338-852X

Funding

Medical Research Council (MC_UP_A022_1007)

  • Ramanujan S Hegde

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maya Schuldiner, Weizmann Institute, Israel

Publication history

  1. Received: March 11, 2019
  2. Accepted: May 15, 2019
  3. Accepted Manuscript published: May 16, 2019 (version 1)
  4. Version of Record published: May 29, 2019 (version 2)

Copyright

© 2019, Zavodszky & Hegde

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,330
    Page views
  • 620
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Shannon M Walsh et al.
    Tools and Resources Updated

    The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a ‘molecular tracking device’ to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.

    1. Cell Biology
    Jennifer M Kunselman et al.
    Research Article Updated

    Many signal transduction systems have an apparent redundancy built into them, where multiple physiological agonists activate the same receptors. Whether this is true redundancy, or whether this provides an as-yet unrecognized specificity in downstream signaling, is not well understood. We address this question using the kappa opioid receptor (KOR), a physiologically relevant G protein-coupled receptor (GPCR) that is activated by multiple members of the Dynorphin family of opioid peptides. We show that two related peptides, Dynorphin A and Dynorphin B, bind and activate KOR to similar extents in mammalian neuroendocrine cells and rat striatal neurons, but localize KOR to distinct intracellular compartments and drive different post-endocytic fates of the receptor. Strikingly, localization of KOR to the degradative pathway by Dynorphin A induces sustained KOR signaling from these compartments. Our results suggest that seemingly redundant endogenous peptides can fine-tune signaling by regulating the spatiotemporal profile of KOR signaling.