Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice

  1. Mark S Ladinsky
  2. Wannisa Khamaikawin
  3. Yujin Jung
  4. Samantha Lin
  5. Jennifer Lam
  6. Dong Sung An
  7. Pamela J Bjorkman
  8. Collin Kieffer  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of California, Los Angeles, United States
  3. University of Illinois at Urbana-Champaign, United States

Abstract

Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/thymus/liver (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.

Data availability

Source data files have been provided for graphs from Figure 1.

Article and author information

Author details

  1. Mark S Ladinsky

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  2. Wannisa Khamaikawin

    School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Yujin Jung

    School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Samantha Lin

    School of Nursing, UCLA AIDS Institute,, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Jennifer Lam

    School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Dong Sung An

    School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Pamela J Bjorkman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Pamela J Bjorkman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2277-3990
  8. Collin Kieffer

    Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    collink@illinois.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9051-3819

Funding

National Institute of Allergy and Infectious Diseases (1R01AI100652-01A1)

  • Dong Sung An

National Institute of Allergy and Infectious Diseases (AI028697)

  • Dong Sung An

National Institute of General Medical Sciences (2 P50 GM082545-08)

  • Pamela J Bjorkman

California HIV/AIDS Research Program (ID15-CT-017)

  • Pamela J Bjorkman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie Overbaugh, Fred Hutchinson Cancer Research Center, United States

Ethics

Animal experimentation: Animals were maintained at the UCLA CFAR Humanized Mouse Core laboratory in accordance with a protocol approved by the UCLA Animal Research Committee. Experiments conformed to all relevant regulatory standards.(UCLA ARC # 2007-092-41A).

Version history

  1. Received: March 15, 2019
  2. Accepted: October 27, 2019
  3. Accepted Manuscript published: October 28, 2019 (version 1)
  4. Version of Record published: November 8, 2019 (version 2)

Copyright

© 2019, Ladinsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,879
    Page views
  • 274
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark S Ladinsky
  2. Wannisa Khamaikawin
  3. Yujin Jung
  4. Samantha Lin
  5. Jennifer Lam
  6. Dong Sung An
  7. Pamela J Bjorkman
  8. Collin Kieffer
(2019)
Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice
eLife 8:e46916.
https://doi.org/10.7554/eLife.46916

Share this article

https://doi.org/10.7554/eLife.46916

Further reading

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.