Chronically-implanted Neuropixels probes enable high yield recordings in freely moving mice

  1. Ashley L Juavinett
  2. George Bekheet
  3. Anne K Churchland  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of Connecticutt, United States
  3. Cold Spring Harbor Laboratory, United States

Abstract

The advent of high-yield electrophysiology using Neuropixels probes is now enabling researchers to simultaneously record hundreds of neurons with remarkably high signal to noise. However, these probes have not been well-suited to use in freely moving mice. It is critical to study neural activity in unrestricted animals for many reasons, such as leveraging ethological approaches to study neural circuits. We designed and implemented a novel device that allows Neuropixels probes to be customized for chronically-implanted experiments in freely moving mice. We demonstrate the ease and utility of this approach in recording hundreds of neurons during an ethological behavior across weeks of experiments. We provide the technical drawings and procedures for other researchers to do the same. Importantly, our approach enables researchers to explant and reuse these valuable probes, a transformative step which has not been established for recordings with any type of chronically-implanted probe.

Data availability

We have made all the materials related to this device available to the community via GitHub. The technical drawings, the methodological instructions, the photographs and supporting code will, together, allow any researcher to rapidly adopt this new technology and begin to benefit from Neuropixels probes. We are open to other sharing platforms as well (e.g. bio-protocol).We will make the data from the electrophysiological recordings available as well, via the Cold Spring Harbor Laboratory repository which is linked form our lab website.

Article and author information

Author details

  1. Ashley L Juavinett

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4254-3009
  2. George Bekheet

    School of Medicine, University of Connecticutt, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne K Churchland

    Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    churchland@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3205-3794

Funding

Simons Foundation (Simons Collaboration on the Global Brain)

  • Anne K Churchland

Pew Foundation (Pew Scholars)

  • Anne K Churchland

Eleanor Schwartz Fund (Scholar award)

  • Anne K Churchland

Cold Spring Harbor Laboratory (Marie Robertson)

  • Anne K Churchland

National Science Foundation (1559816)

  • George Bekheet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and behavioral procedures conformed to the guidelines established by the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee of Cold Spring Harbor Laboratory (protocol # 16-13-10-7). All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2019, Juavinett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,698
    views
  • 1,679
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashley L Juavinett
  2. George Bekheet
  3. Anne K Churchland
(2019)
Chronically-implanted Neuropixels probes enable high yield recordings in freely moving mice
eLife 8:e47188.
https://doi.org/10.7554/eLife.47188

Share this article

https://doi.org/10.7554/eLife.47188

Further reading

    1. Neuroscience
    Simon Weiler, Manuel Teichert, Troy W Margrie
    Research Article

    The neocortex comprises anatomically discrete yet interconnected areas that are symmetrically located across the two hemispheres. Determining the logic of these macrocircuits is necessary for understanding high level brain function. Here in mice, we have mapped the areal and laminar organization of the ipsi- and contralateral cortical projection onto the primary visual, somatosensory, and motor cortices. We find that although the ipsilateral hemisphere is the primary source of cortical input, there is substantial contralateral symmetry regarding the relative contribution and areal identity of input. Laminar analysis of these input areas show that excitatory Layer 6 corticocortical cells (L6 CCs) are a major projection pathway within and between the two hemispheres. Analysis of the relative contribution of inputs from supra- (feedforward) and infragranular (feedback) layers reveals that contra-hemispheric projections reflect a dominant feedback organization compared to their ipsi-cortical counterpart. The magnitude of the interhemispheric difference in hierarchy was largest for sensory and motor projection areas compared to frontal, medial, or lateral brain areas due to a proportional increase in input from L6 neurons. L6 CCs therefore not only mediate long-range cortical communication but also reflect its inherent feedback organization.

    1. Neuroscience
    Elissa Sutlief, Charlie Walters ... Marshall G Hussain Shuler
    Research Article

    Reward-rate maximization is a prominent normative principle in behavioral ecology, neuroscience, economics, and AI. Here, we identify, compare, and analyze equations to maximize reward rate when assessing whether to initiate a pursuit. In deriving expressions for the value of a pursuit, we show that time’s cost consists of both apportionment and opportunity cost. Reformulating value as a discounting function, we show precisely how a reward-rate-optimal agent’s discounting function (1) combines hyperbolic and linear components reflecting apportionment and opportunity costs, and (2) is dependent not only on the considered pursuit’s properties but also on time spent and rewards obtained outside the pursuit. This analysis reveals how purported signs of suboptimal behavior (hyperbolic discounting, and the Delay, Magnitude, and Sign effects) are in fact consistent with reward-rate maximization. To better account for observed decision-making errors in humans and animals, we then analyze the impact of misestimating reward-rate-maximizing parameters and find that suboptimal decisions likely stem from errors in assessing time’s apportionment—specifically, underweighting time spent outside versus inside a pursuit—which we term the ‘Malapportionment Hypothesis’. This understanding of the true pattern of temporal decision-making errors is essential to deducing the learning algorithms and representational architectures actually used by humans and animals.