Telomere dysfunction cooperates with epigenetic alterations to impair murine embryonic stem cell fate commitment

  1. Mélanie Criqui
  2. Aditi Qamra
  3. Tsz Wai Chu
  4. Monika Sharma
  5. Julissa Tsao
  6. Danielle A Henry
  7. Dalia Barsyte-Lovejoy
  8. Cheryl H Arrowsmith
  9. Neil Winegarden
  10. Mathieu Lupien
  11. Lea Harrington  Is a corresponding author
  1. University of Montreal, Canada
  2. University Health Network, Canada
  3. McGill University Health Centre, Canada
  4. University of Toronto, Canada
  5. University Heath Network, Canada

Abstract

The precise relationship between epigenetic perturbations and telomere dysfunction is an extant question. Previously, we showed that telomere dysfunction leads to differentiation instability in murine embryonic stem cells (mESCs) via perturbations in DNA methylation at pluripotency-factor promoters. Here, we uncovered that telomerase reverse transcriptase null (Tert-/-) mESCs exhibit genome-wide perturbations in chromatin accessibility and gene expression during differentiation. These changes were accompanied by an increase of H3K27me3 globally, an altered chromatin landscape at the Pou5f1/Oct4 pluripotency gene promoter, and impaired Tert-/- mESC differentiation. Inhibition of the Polycomb Repressive Complex 2 (PRC2), an H3K27 tri-methyltransferase, exacerbated the impairment in differentiation and pluripotency gene repression in Tert-/- mESCs but not wild-type mESCs, whereas inhibition of H3K27me3 demethylation led to a partial rescue of the Tert-/- phenotype. This data reveals a new interdependent relationship between H3K27me3 and telomere integrity in stem cell lineage commitment that may have implications in aging and cancer.

Data availability

ATAC-seq and ChIP-seq data has been deposited in GEO under accession number GSE130780 and GSE146322. The Metadata sheet accompanying this deposition is provided in Figure 4 - source data files 2 and 4.

The following data sets were generated

Article and author information

Author details

  1. Mélanie Criqui

    Department of Molecular Biology, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Aditi Qamra

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tsz Wai Chu

    Clinical Research Unit, McGill University Health Centre, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Monika Sharma

    Princess Margaret Genomics Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Julissa Tsao

    Princess Margaret Genomics Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Danielle A Henry

    Department of Molecular Biology, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Dalia Barsyte-Lovejoy

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheryl H Arrowsmith

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Neil Winegarden

    Princess Margaret Genomics Centre, University Heath Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Mathieu Lupien

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0929-9478
  11. Lea Harrington

    Department of Medicine, University of Montreal, Montreal, Canada
    For correspondence
    lea.harrington@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4977-2744

Funding

Canadian Institutes of Health Research (367427)

  • Lea Harrington

Canadian Institutes of Health Research (133573)

  • Lea Harrington

Wellcome (084637)

  • Lea Harrington

Ontario Genomics Institute (OGI-055)

  • Cheryl H Arrowsmith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Criqui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,742
    views
  • 352
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mélanie Criqui
  2. Aditi Qamra
  3. Tsz Wai Chu
  4. Monika Sharma
  5. Julissa Tsao
  6. Danielle A Henry
  7. Dalia Barsyte-Lovejoy
  8. Cheryl H Arrowsmith
  9. Neil Winegarden
  10. Mathieu Lupien
  11. Lea Harrington
(2020)
Telomere dysfunction cooperates with epigenetic alterations to impair murine embryonic stem cell fate commitment
eLife 9:e47333.
https://doi.org/10.7554/eLife.47333

Share this article

https://doi.org/10.7554/eLife.47333

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.