Abstract

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularisation is widely conserved and therefore might represent the ancestral function of the pathway.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The Supplemental Material File 1 contains all primers used to amplify sequences for production of antisense RNA (ISH) and dsRNA (RNAi).

Article and author information

Author details

  1. Matthew Alan Benton

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7953-0765
  2. Nadine Frey

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rodrigo Nunes da Fonseca

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cornelia von Levetzow

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dominik Stappert

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Muhammad Salim Hakeemi

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kai H Conrads

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Pechmann

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0043-906X
  9. Kristen A Panfilio

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6417-251X
  10. Jeremy A Lynch

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7625-657X
  11. Siegfried Roth

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    For correspondence
    siegfried.roth@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-3558

Funding

Deutsche Forschungsgemeinschaft (CRC 680)

  • Nadine Frey

Deutsche Forschungsgemeinschaft

  • Kai H Conrads

University of Cologne (Postdoctoral grant)

  • Matthias Pechmann

Deutsche Forschungsgemeinschaft (CRC 680)

  • Siegfried Roth

Deutsche Forschungsgemeinschaft (DFG Research Fellowship 407643416)

  • Matthew Alan Benton

FAPERJ

  • Rodrigo Nunes da Fonseca

University of Cologne (International Graduate School in Genetics and Functional Genomics)

  • Rodrigo Nunes da Fonseca
  • Cornelia von Levetzow

CNPq

  • Rodrigo Nunes da Fonseca

CAPES

  • Rodrigo Nunes da Fonseca

Deutsche Forschungsgemeinschaft (RU 1234)

  • Muhammad Salim Hakeemi

Boehringer Ingelheim Fonds (PhD fellowship)

  • Dominik Stappert

Deutsche Forschungsgemeinschaft (Emmy Noether Program PA 2044/1-1))

  • Kristen A Panfilio

National Institutes of Health (R03 HD078578)

  • Jeremy A Lynch

Alexander von Humboldt Foundation (Postdoctoral Felloship)

  • Matthew Alan Benton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Benton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,124
    views
  • 266
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Alan Benton
  2. Nadine Frey
  3. Rodrigo Nunes da Fonseca
  4. Cornelia von Levetzow
  5. Dominik Stappert
  6. Muhammad Salim Hakeemi
  7. Kai H Conrads
  8. Matthias Pechmann
  9. Kristen A Panfilio
  10. Jeremy A Lynch
  11. Siegfried Roth
(2019)
Fog signaling has diverse roles in epithelial morphogenesis in insects
eLife 8:e47346.
https://doi.org/10.7554/eLife.47346

Share this article

https://doi.org/10.7554/eLife.47346

Further reading

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Christopher S McAllester, John E Pool
    Research Article

    Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3 R)K favoring survival and In(3 L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3 L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3 R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.