Abstract

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularisation is widely conserved and therefore might represent the ancestral function of the pathway.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The Supplemental Material File 1 contains all primers used to amplify sequences for production of antisense RNA (ISH) and dsRNA (RNAi).

Article and author information

Author details

  1. Matthew Alan Benton

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7953-0765
  2. Nadine Frey

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rodrigo Nunes da Fonseca

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cornelia von Levetzow

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dominik Stappert

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Muhammad Salim Hakeemi

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kai H Conrads

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Pechmann

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0043-906X
  9. Kristen A Panfilio

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6417-251X
  10. Jeremy A Lynch

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7625-657X
  11. Siegfried Roth

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    For correspondence
    siegfried.roth@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-3558

Funding

Deutsche Forschungsgemeinschaft (CRC 680)

  • Nadine Frey

Deutsche Forschungsgemeinschaft

  • Kai H Conrads

University of Cologne (Postdoctoral grant)

  • Matthias Pechmann

Deutsche Forschungsgemeinschaft (CRC 680)

  • Siegfried Roth

Deutsche Forschungsgemeinschaft (DFG Research Fellowship 407643416)

  • Matthew Alan Benton

FAPERJ

  • Rodrigo Nunes da Fonseca

University of Cologne (International Graduate School in Genetics and Functional Genomics)

  • Rodrigo Nunes da Fonseca
  • Cornelia von Levetzow

CNPq

  • Rodrigo Nunes da Fonseca

CAPES

  • Rodrigo Nunes da Fonseca

Deutsche Forschungsgemeinschaft (RU 1234)

  • Muhammad Salim Hakeemi

Boehringer Ingelheim Fonds (PhD fellowship)

  • Dominik Stappert

Deutsche Forschungsgemeinschaft (Emmy Noether Program PA 2044/1-1))

  • Kristen A Panfilio

National Institutes of Health (R03 HD078578)

  • Jeremy A Lynch

Alexander von Humboldt Foundation (Postdoctoral Felloship)

  • Matthew Alan Benton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: April 2, 2019
  2. Accepted: September 30, 2019
  3. Accepted Manuscript published: October 1, 2019 (version 1)
  4. Version of Record published: October 15, 2019 (version 2)

Copyright

© 2019, Benton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,974
    Page views
  • 257
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Alan Benton
  2. Nadine Frey
  3. Rodrigo Nunes da Fonseca
  4. Cornelia von Levetzow
  5. Dominik Stappert
  6. Muhammad Salim Hakeemi
  7. Kai H Conrads
  8. Matthias Pechmann
  9. Kristen A Panfilio
  10. Jeremy A Lynch
  11. Siegfried Roth
(2019)
Fog signaling has diverse roles in epithelial morphogenesis in insects
eLife 8:e47346.
https://doi.org/10.7554/eLife.47346

Share this article

https://doi.org/10.7554/eLife.47346

Further reading

    1. Evolutionary Biology
    Jordan Little, Maria Chikina, Nathan L Clark
    Research Article

    Co-functional proteins tend to have rates of evolution that covary over time. This correlation between evolutionary rates can be measured over the branches of a phylogenetic tree through methods such as evolutionary rate covariation (ERC), and then used to construct gene networks by the identification of proteins with functional interactions. The cause of this correlation has been hypothesized to result from both compensatory coevolution at physical interfaces and nonphysical forces such as shared changes in selective pressure. This study explores whether coevolution due to compensatory mutations has a measurable effect on the ERC signal. We examined the difference in ERC signal between physically interacting protein domains within complexes compared to domains of the same proteins that do not physically interact. We found no generalizable relationship between physical interaction and high ERC, although a few complexes ranked physical interactions higher than nonphysical interactions. Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC, and we hypothesize that the stronger signal instead comes from selective pressures on the protein as a whole and maintenance of the general function.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Roee Ben Nissan, Eliya Milshtein ... Ron Milo
    Research Article

    Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme’s activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle’s electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.