1. Physics of Living Systems
Download icon

High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria

  1. Klaas Bente
  2. Sarah Mohammadinejad
  3. Mohammad Avalin Charsooghi
  4. Felix Bachmann
  5. Agnese Codutti
  6. Christopher T Lefèvre
  7. Stefan Klumpp  Is a corresponding author
  8. Damien Faivre  Is a corresponding author
  1. Max Planck Institute of Colloids and Interfaces, Germany
  2. CEA Cadarache, France
Research Article
  • Cited 1
  • Views 1,433
  • Annotations
Cite this article as: eLife 2020;9:e47551 doi: 10.7554/eLife.47551

Abstract

Bacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additional experimental limitations. We show that magnetotactic cocci with two flagella bundles on one pole swim faster than 500 µm·s-1 along a double helical path, making them one of the fastest natural microswimmers. We additionally reveal that the cells reorient in less than 5 ms, an order of magnitude faster than reported so far for any other bacteria. Using hydrodynamic modeling, we demonstrate that a mode where a pushing and a pulling bundle cooperate is the only possibility to enable both helical tracks and fast reorientations. The advantage of sheathed flagella bundles is the high rigidity, making high swimming speeds possible.

Article and author information

Author details

  1. Klaas Bente

    Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Mohammadinejad

    Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3758-5693
  3. Mohammad Avalin Charsooghi

    Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7772-8513
  4. Felix Bachmann

    Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Agnese Codutti

    Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher T Lefèvre

    BIAM, CEA Cadarache, Saint Paul lez Durance, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefan Klumpp

    Max Planck Institute of Colloids and Interfaces, Göttingen, Germany
    For correspondence
    klumpp@mpikg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Damien Faivre

    BIAM, CEA Cadarache, Saint Paul lez Durance, France
    For correspondence
    damien.faivre@cea.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6191-3389

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Damien Faivre

Deutsche Forschungsgemeinschaft (FA 835/7-2)

  • Damien Faivre

Deutsche Forschungsgemeinschaft (KL 818/2-2)

  • Stefan Klumpp

Deutscher Akademischer Austauschdienst (57314018)

  • Sarah Mohammadinejad

Deutsche Forschungsgemeinschaft (SFB 937)

  • Stefan Klumpp

Agence Nationale de la Recherche (ANR-16-TERC-0025-01)

  • Christopher T Lefèvre

IMPRS on Multiscale Biosystems (Graduate Student Fellowship)

  • Agnese Codutti

The research leading to these results was supported by the Max Planck Society and by Deutsche Forschungsgemeinschaft (DFG) within the priority program on microswimmers (grants No. KL 818/2-2 and FA 835/7-2 to S.K. and D.F.). Further, S.M. was supported by Deutscher Akademischer Austauschdienst, DAAD (grant no. 57314018) as well as Deutsche Forschungsgemeinschaft (DFG) through SFB 937. A.C. is funded by the IMPRS on Multiscale Biosystems. C.T.L acknowledges support by the French National Research Agency (ANR Tremplin-ERC: ANR-16-TERC-0025-01).

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: April 9, 2019
  2. Accepted: January 27, 2020
  3. Accepted Manuscript published: January 28, 2020 (version 1)
  4. Version of Record published: February 10, 2020 (version 2)

Copyright

© 2020, Bente et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,433
    Page views
  • 177
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Lokesh G Pimpale et al.
    Research Article Updated

    Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.

    1. Ecology
    2. Physics of Living Systems
    Gabriele Valentini et al.
    Research Article

    Behavioral correlations stretching over time are an essential but often neglected aspect of interactions among animals. These correlations pose a challenge to current behavioral-analysis methods that lack effective means to analyze complex series of interactions. Here we show that non-invasive information-theoretic tools can be used to reveal communication protocols that guide complex social interactions by measuring simultaneous flows of different types of information between subjects. We demonstrate this approach by showing that the tandem-running behavior of the ant Temnothorax rugatulus and that of the termites Coptotermes formosanus and Reticulitermes speratus are governed by different communication protocols. Our discovery reconciles the diverse ultimate causes of tandem running across these two taxa with their apparently similar signaling mechanisms. We show that bidirectional flow of information is present only in ants and is consistent with the use of acknowledgement signals to regulate the flow of directional information.