Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes

  1. Juyue Chen
  2. Holly B Mandel
  3. James E Fitzgerald  Is a corresponding author
  4. Damon A Clark  Is a corresponding author
  1. Yale University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.

Data availability

All data and code to reproduce figures here are available at:https://github.com/ClarkLabCode/ThirdOrderKernelCodeData is also available on Dryad under https://doi.org/10.5061/dryad.7jm87bt

The following data sets were generated

Article and author information

Author details

  1. Juyue Chen

    Interdepartmental Neuroscience Program, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Holly B Mandel

    Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James E Fitzgerald

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    fitzgeraldj@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
  4. Damon A Clark

    Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, United States
    For correspondence
    damon.clark@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8487-700X

Funding

National Institutes of Health (R01EY026555)

  • Juyue Chen
  • Damon A Clark

National Science Foundation (IOS1558103)

  • Juyue Chen
  • Damon A Clark

Chicago Community Trust (Searle Scholar Award)

  • Holly B Mandel
  • Damon A Clark

Howard Hughes Medical Institute

  • James E Fitzgerald

Alfred P. Sloan Foundation (Research Fellowship)

  • Damon A Clark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,707
    views
  • 291
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juyue Chen
  2. Holly B Mandel
  3. James E Fitzgerald
  4. Damon A Clark
(2019)
Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes
eLife 8:e47579.
https://doi.org/10.7554/eLife.47579

Share this article

https://doi.org/10.7554/eLife.47579

Further reading

    1. Neuroscience
    Patricia E Phelps, Sung Min Ha ... Xia Yang
    Research Article

    Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.

    1. Neuroscience
    Aida Bareghamyan, Changfeng Deng ... Don B Arnold
    Tools and Resources

    Recombinant optogenetic and chemogenetic proteins are potent tools for manipulating neuronal activity and controlling neural circuit function. However, there are few analogous tools for manipulating the structure of neural circuits. Here, we introduce three rationally designed genetically encoded tools that use E3 ligase-dependent mechanisms to trigger the degradation of synaptic scaffolding proteins, leading to functional ablation of synapses. First, we developed a constitutive excitatory synapse ablator, PFE3, analogous to the inhibitory synapse ablator GFE3. PFE3 targets the RING domain of the E3 ligase Mdm2 and the proteasome-interacting region of Protocadherin 10 to the scaffolding protein PSD-95, leading to efficient ablation of excitatory synapses. In addition, we developed a light-inducible version of GFE3, paGFE3, using a novel photoactivatable complex based on the photocleavable protein PhoCl2c. paGFE3 degrades Gephyrin and ablates inhibitory synapses in response to 400 nm light. Finally, we developed a chemically inducible version of GFE3, chGFE3, which degrades inhibitory synapses when combined with the bio-orthogonal dimerizer HaloTag ligand-trimethoprim. Each tool is specific, reversible, and capable of breaking neural circuits at precise locations.