Abstract

Innate lymphoid cells (ILCs) were originally classified based on their cytokine profiles, placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like cells that are limited to the tumor microenvironment and whether this conversion occurs beyond this environment remains unknown. Here we describe Toxoplasma gondii infection converts NK cells into ILC1-like cells that are distinct from both steady-state NK cells and ILC1s in uninfected mice. These cells were Eomes-dependent, indicating that NK cells can give rise to Eomes- Tbet-dependent ILC1-like cells that circulate widely and persist independent of ongoing infection. Moreover, these changes appear permanent, as supported by epigenetic analyses. Thus, these studies markedly expand current concepts of NK cells, ILCs, and their potential conversion.

Data availability

GEO accession numbers are noted in Materials and Methods. Accession numbers: GSE124313 (RNA-seq, ATAC-seq) and GSE124577 (scRNA-seq).

The following data sets were generated

Article and author information

Author details

  1. Eugene Park

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2617-7571
  2. Swapneel Patel

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiuling Wang

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prabhakar Andhey

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantin Zaitsev

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophia Porter

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxwell Hershey

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Bern

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Beatrice Plougastel-Douglas

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrick Collins

    Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Marco Colonna

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5222-4987
  12. Kenneth M Murphy

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Eugene Oltz

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Maxim Artyomov

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. L David Sibley

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Wayne M Yokoyama

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (F30DK108472)

  • Eugene Park

National Institute of Allergy and Infectious Diseases (AI128845)

  • Wayne M Yokoyama

National Institute of Allergy and Infectious Diseases (AI120606)

  • Eugene Oltz

National Institute of Allergy and Infectious Diseases (AI134035)

  • Eugene Oltz

National Institute of Allergy and Infectious Diseases (AI134035)

  • Marco Colonna

National Institute of Allergy and Infectious Diseases (AI11852)

  • Eugene Oltz

National Cancer Institute (CA188286)

  • Eugene Oltz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan Sher, NIH, NIAID, United States

Ethics

Animal experimentation: All protocols were approved by the Institutional Animal Care and Uses Committee(Washington University School of Medicine, St. Louis, MO) under animal protocol number 20160002.

Version history

  1. Received: April 11, 2019
  2. Accepted: August 8, 2019
  3. Accepted Manuscript published: August 8, 2019 (version 1)
  4. Version of Record published: August 21, 2019 (version 2)

Copyright

© 2019, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,712
    views
  • 559
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eugene Park
  2. Swapneel Patel
  3. Qiuling Wang
  4. Prabhakar Andhey
  5. Konstantin Zaitsev
  6. Sophia Porter
  7. Maxwell Hershey
  8. Michael Bern
  9. Beatrice Plougastel-Douglas
  10. Patrick Collins
  11. Marco Colonna
  12. Kenneth M Murphy
  13. Eugene Oltz
  14. Maxim Artyomov
  15. L David Sibley
  16. Wayne M Yokoyama
(2019)
Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells
eLife 8:e47605.
https://doi.org/10.7554/eLife.47605

Share this article

https://doi.org/10.7554/eLife.47605

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Immunology and Inflammation
    Hyereen Kang, Seong Woo Choi ... Myung-Shik Lee
    Research Article

    We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ERlysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.