Abstract

Innate lymphoid cells (ILCs) were originally classified based on their cytokine profiles, placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like cells that are limited to the tumor microenvironment and whether this conversion occurs beyond this environment remains unknown. Here we describe Toxoplasma gondii infection converts NK cells into ILC1-like cells that are distinct from both steady-state NK cells and ILC1s in uninfected mice. These cells were Eomes-dependent, indicating that NK cells can give rise to Eomes- Tbet-dependent ILC1-like cells that circulate widely and persist independent of ongoing infection. Moreover, these changes appear permanent, as supported by epigenetic analyses. Thus, these studies markedly expand current concepts of NK cells, ILCs, and their potential conversion.

Data availability

GEO accession numbers are noted in Materials and Methods. Accession numbers: GSE124313 (RNA-seq, ATAC-seq) and GSE124577 (scRNA-seq).

The following data sets were generated

Article and author information

Author details

  1. Eugene Park

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2617-7571
  2. Swapneel Patel

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiuling Wang

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prabhakar Andhey

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantin Zaitsev

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophia Porter

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxwell Hershey

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Bern

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Beatrice Plougastel-Douglas

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrick Collins

    Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Marco Colonna

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5222-4987
  12. Kenneth M Murphy

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Eugene Oltz

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Maxim Artyomov

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. L David Sibley

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Wayne M Yokoyama

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (F30DK108472)

  • Eugene Park

National Institute of Allergy and Infectious Diseases (AI128845)

  • Wayne M Yokoyama

National Institute of Allergy and Infectious Diseases (AI120606)

  • Eugene Oltz

National Institute of Allergy and Infectious Diseases (AI134035)

  • Eugene Oltz

National Institute of Allergy and Infectious Diseases (AI134035)

  • Marco Colonna

National Institute of Allergy and Infectious Diseases (AI11852)

  • Eugene Oltz

National Cancer Institute (CA188286)

  • Eugene Oltz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan Sher, NIH, NIAID, United States

Ethics

Animal experimentation: All protocols were approved by the Institutional Animal Care and Uses Committee(Washington University School of Medicine, St. Louis, MO) under animal protocol number 20160002.

Version history

  1. Received: April 11, 2019
  2. Accepted: August 8, 2019
  3. Accepted Manuscript published: August 8, 2019 (version 1)
  4. Version of Record published: August 21, 2019 (version 2)

Copyright

© 2019, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,646
    views
  • 557
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eugene Park
  2. Swapneel Patel
  3. Qiuling Wang
  4. Prabhakar Andhey
  5. Konstantin Zaitsev
  6. Sophia Porter
  7. Maxwell Hershey
  8. Michael Bern
  9. Beatrice Plougastel-Douglas
  10. Patrick Collins
  11. Marco Colonna
  12. Kenneth M Murphy
  13. Eugene Oltz
  14. Maxim Artyomov
  15. L David Sibley
  16. Wayne M Yokoyama
(2019)
Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells
eLife 8:e47605.
https://doi.org/10.7554/eLife.47605

Share this article

https://doi.org/10.7554/eLife.47605

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.