Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control

  1. Rebecca A Callahan
  2. Richard Roberts
  3. Mohini Sengupta
  4. Yukiko Kimura
  5. Shin-ichi Higashijima
  6. Martha W Bagnall  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. National Institute for Basic Biology, Japan

Abstract

The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.

Data availability

Datasets have been deposited on Dryad, https://dx.doi.org/10.5061/dryad.1d78mt2

The following data sets were generated

Article and author information

Author details

  1. Rebecca A Callahan

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard Roberts

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohini Sengupta

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yukiko Kimura

    Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8381-8622
  5. Shin-ichi Higashijima

    Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Martha W Bagnall

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    For correspondence
    bagnall@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2102-6165

Funding

National BioResource Project

  • Shin-ichi Higashijima

National Institute on Deafness and Other Communication Disorders (R00 DC012536)

  • Martha W Bagnall

National Institute on Deafness and Other Communication Disorders (R01 DC016413)

  • Martha W Bagnall

National Institute of Neurological Disorders and Stroke (F32 NS103247)

  • Rebecca A Callahan

Alfred P. Sloan Foundation

  • Martha W Bagnall

Pew Charitable Trusts

  • Martha W Bagnall

McKnight Endowment Fund for Neuroscience

  • Martha W Bagnall

Children's Discovery Institute

  • Martha W Bagnall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This research adheres to recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and received approval by the Washington University Institutional Animal Care and Use Committee (protocol 20170228).

Copyright

© 2019, Callahan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 378
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca A Callahan
  2. Richard Roberts
  3. Mohini Sengupta
  4. Yukiko Kimura
  5. Shin-ichi Higashijima
  6. Martha W Bagnall
(2019)
Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control
eLife 8:e47837.
https://doi.org/10.7554/eLife.47837

Share this article

https://doi.org/10.7554/eLife.47837

Further reading

    1. Neuroscience
    Timo van Kerkoerle, Louise Pape ... Ghislaine Dehaene-Lambertz
    Research Article

    The emergence of symbolic thinking has been proposed as a dominant cognitive criterion to distinguish humans from other primates during hominisation. Although the proper definition of a symbol has been the subject of much debate, one of its simplest features is bidirectional attachment: the content is accessible from the symbol, and vice versa. Behavioural observations scattered over the past four decades suggest that this criterion might not be met in non-human primates, as they fail to generalise an association learned in one temporal order (A to B) to the reverse order (B to A). Here, we designed an implicit fMRI test to investigate the neural mechanisms of arbitrary audio–visual and visual–visual pairing in monkeys and humans and probe their spontaneous reversibility. After learning a unidirectional association, humans showed surprise signals when this learned association was violated. Crucially, this effect occurred spontaneously in both learned and reversed directions, within an extended network of high-level brain areas, including, but also going beyond, the language network. In monkeys, by contrast, violations of association effects occurred solely in the learned direction and were largely confined to sensory areas. We propose that a human-specific brain network may have evolved the capacity for reversible symbolic reference.

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.