Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control

  1. Rebecca A Callahan
  2. Richard Roberts
  3. Mohini Sengupta
  4. Yukiko Kimura
  5. Shin-ichi Higashijima
  6. Martha W Bagnall  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. National Institute for Basic Biology, Japan

Abstract

The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.

Data availability

Datasets have been deposited on Dryad, https://dx.doi.org/10.5061/dryad.1d78mt2

The following data sets were generated

Article and author information

Author details

  1. Rebecca A Callahan

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard Roberts

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohini Sengupta

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yukiko Kimura

    Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8381-8622
  5. Shin-ichi Higashijima

    Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Martha W Bagnall

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    For correspondence
    bagnall@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2102-6165

Funding

National BioResource Project

  • Shin-ichi Higashijima

National Institute on Deafness and Other Communication Disorders (R00 DC012536)

  • Martha W Bagnall

National Institute on Deafness and Other Communication Disorders (R01 DC016413)

  • Martha W Bagnall

National Institute of Neurological Disorders and Stroke (F32 NS103247)

  • Rebecca A Callahan

Alfred P. Sloan Foundation

  • Martha W Bagnall

Pew Charitable Trusts

  • Martha W Bagnall

McKnight Endowment Fund for Neuroscience

  • Martha W Bagnall

Children's Discovery Institute

  • Martha W Bagnall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claire Wyart, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France

Ethics

Animal experimentation: This research adheres to recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and received approval by the Washington University Institutional Animal Care and Use Committee (protocol 20170228).

Version history

  1. Received: April 20, 2019
  2. Accepted: July 26, 2019
  3. Accepted Manuscript published: July 29, 2019 (version 1)
  4. Version of Record published: August 20, 2019 (version 2)

Copyright

© 2019, Callahan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,387
    views
  • 365
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca A Callahan
  2. Richard Roberts
  3. Mohini Sengupta
  4. Yukiko Kimura
  5. Shin-ichi Higashijima
  6. Martha W Bagnall
(2019)
Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control
eLife 8:e47837.
https://doi.org/10.7554/eLife.47837

Share this article

https://doi.org/10.7554/eLife.47837

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.