Elevating acetyl-CoA levels reduces aspects of brain aging

  1. Antonio Currais  Is a corresponding author
  2. Ling Huang
  3. Joshua Goldberg
  4. Michael Petrascheck
  5. Gamze Ates
  6. António Pinto-Duarte
  7. Maxim N Shokhirev
  8. David Schubert
  9. Pamela Maher  Is a corresponding author
  1. The Salk Institute for Biological Studies, United States
  2. The Scripps Research Institute, United States

Abstract

Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.

Data availability

Whole transcriptomic data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE101112.

The following data sets were generated

Article and author information

Author details

  1. Antonio Currais

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    acurrais@salk.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4142-7054
  2. Ling Huang

    The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Joshua Goldberg

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Michael Petrascheck

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1010-145X
  5. Gamze Ates

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. António Pinto-Duarte

    Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2215-7653
  7. Maxim N Shokhirev

    The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. David Schubert

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    David Schubert, is an unpaid advisor for Abrexa Pharmaceuticals, a company working on the development of J147 for AD therapy. The Salk Institute holds the patents for CMS121 and J147.
  9. Pamela Maher

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    pmaher@salk.edu
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (R01 AG046153)

  • David Schubert
  • Pamela Maher

National Institutes of Health (RF1 AG054714)

  • David Schubert
  • Pamela Maher

Glenn Foundation for Medical Research

  • Joshua Goldberg

National Institutes of Health (R41 AI104034)

  • Pamela Maher

Edward N. and Della L. Thome Memorial Foundation

  • Pamela Maher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the US Public Health Service Guide for Care and Use of Laboratory Animals and protocol 12-00001 approved by the IACUC at Salk Institute.

Copyright

© 2019, Currais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,615
    views
  • 1,243
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Currais
  2. Ling Huang
  3. Joshua Goldberg
  4. Michael Petrascheck
  5. Gamze Ates
  6. António Pinto-Duarte
  7. Maxim N Shokhirev
  8. David Schubert
  9. Pamela Maher
(2019)
Elevating acetyl-CoA levels reduces aspects of brain aging
eLife 8:e47866.
https://doi.org/10.7554/eLife.47866

Share this article

https://doi.org/10.7554/eLife.47866

Further reading

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.