Elevating acetyl-CoA levels reduces aspects of brain aging

  1. Antonio Currais  Is a corresponding author
  2. Ling Huang
  3. Joshua Goldberg
  4. Michael Petrascheck
  5. Gamze Ates
  6. António Pinto-Duarte
  7. Maxim N Shokhirev
  8. David Schubert
  9. Pamela Maher  Is a corresponding author
  1. The Salk Institute for Biological Studies, United States
  2. The Scripps Research Institute, United States

Abstract

Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.

Data availability

Whole transcriptomic data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE101112.

The following data sets were generated

Article and author information

Author details

  1. Antonio Currais

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    acurrais@salk.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4142-7054
  2. Ling Huang

    The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Joshua Goldberg

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Michael Petrascheck

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1010-145X
  5. Gamze Ates

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. António Pinto-Duarte

    Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2215-7653
  7. Maxim N Shokhirev

    The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. David Schubert

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    David Schubert, is an unpaid advisor for Abrexa Pharmaceuticals, a company working on the development of J147 for AD therapy. The Salk Institute holds the patents for CMS121 and J147.
  9. Pamela Maher

    Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    pmaher@salk.edu
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (R01 AG046153)

  • David Schubert
  • Pamela Maher

National Institutes of Health (RF1 AG054714)

  • David Schubert
  • Pamela Maher

Glenn Foundation for Medical Research

  • Joshua Goldberg

National Institutes of Health (R41 AI104034)

  • Pamela Maher

Edward N. and Della L. Thome Memorial Foundation

  • Pamela Maher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the US Public Health Service Guide for Care and Use of Laboratory Animals and protocol 12-00001 approved by the IACUC at Salk Institute.

Copyright

© 2019, Currais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,591
    views
  • 1,241
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Currais
  2. Ling Huang
  3. Joshua Goldberg
  4. Michael Petrascheck
  5. Gamze Ates
  6. António Pinto-Duarte
  7. Maxim N Shokhirev
  8. David Schubert
  9. Pamela Maher
(2019)
Elevating acetyl-CoA levels reduces aspects of brain aging
eLife 8:e47866.
https://doi.org/10.7554/eLife.47866

Share this article

https://doi.org/10.7554/eLife.47866

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.