RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain

  1. Brooks G Robinson  Is a corresponding author
  2. Xintong Cai
  3. Jiexin Wang
  4. James R Bunzow
  5. John T Williams
  6. Pascal S Kaeser  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Harvard Medical School, United States

Abstract

Action potentials trigger neurotransmitter release at active zones, specialized release sites in axons. Many neurons also secrete neurotransmitters or neuromodulators from their somata and dendrites. However, it is unclear whether somatodendritic release employs specialized sites for release, and the molecular machinery for somatodendritic release is not understood. Here, we identify an essential role for the active zone protein RIM in stimulated somatodendritic dopamine release in the midbrain. In mice in which RIMs are selectively removed from dopamine neurons, action potentials failed to evoke significant somatodendritic release detected via D2 receptor-mediated currents. Compellingly, spontaneous dopamine release was normal upon RIM knockout. Dopamine neuron morphology, excitability, and dopamine release evoked by amphetamine, which reverses dopamine transporters, were also unaffected. We conclude that somatodendritic release employs molecular scaffolds to establish secretory sites for rapid dopamine signaling during firing. In contrast, basal release that is independent of action potential firing does not require RIM.

Data availability

All data generated during this study are included in the figures with individual data points shown in each figure whenever possible.

Article and author information

Author details

  1. Brooks G Robinson

    The Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    robinbro@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5020-531X
  2. Xintong Cai

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiexin Wang

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James R Bunzow

    The Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John T Williams

    The Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0647-6144
  6. Pascal S Kaeser

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    kaeser@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-1958

Funding

National Institute of Neurological Disorders and Stroke (R01NS083898)

  • Pascal S Kaeser

National Institute on Drug Abuse (R01DA04523)

  • John T Williams

National Institute of Neurological Disorders and Stroke (R01NS103484)

  • Pascal S Kaeser

National Institute on Drug Abuse (K99DA044287)

  • Brooks G Robinson

Harvard Medical School

  • Pascal S Kaeser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional guidelines of Harvard University and of Oregon Health & Science University, and were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animals were handled according to protocols (protocol numbers Harvard IS00000049, OHSU IP00000160) approved by the institutional animal care and use committee (IACUC).

Copyright

© 2019, Robinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,241
    views
  • 334
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brooks G Robinson
  2. Xintong Cai
  3. Jiexin Wang
  4. James R Bunzow
  5. John T Williams
  6. Pascal S Kaeser
(2019)
RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain
eLife 8:e47972.
https://doi.org/10.7554/eLife.47972

Share this article

https://doi.org/10.7554/eLife.47972

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.