Abstract

The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.

Data availability

Sequencing data reported in this paper has been deposited in GEO under accession number GSE121661. Mass Spectrometry data has been deposited to the PRIDE Archive (accession number PXD011415)

The following data sets were generated

Article and author information

Author details

  1. Martin H Fabry

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Filippo Ciabrelli

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Marzia Munafò

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2689-8432
  4. Evelyn L Eastwood

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Emma Kneuss

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0662-8539
  6. Ilaria Falciatori

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Federica A Falconio

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregory J Hannon

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    greg.hannon@cruk.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4021-3898
  9. Benjamin Czech

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    benjamin.czech@cruk.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8471-0007

Funding

Wellcome (Investigator award 110161/Z/15/Z)

  • Gregory J Hannon

Cancer Research UK

  • Gregory J Hannon

European Molecular Biology Organization (Long-Term Fellowship ALTF 1015-2017)

  • Filippo Ciabrelli

Boehringer Ingelheim Fonds (PhD fellowship)

  • Marzia Munafò

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Torben Heick Jensen, Aarhus University, Denmark

Version history

  1. Received: April 26, 2019
  2. Accepted: June 19, 2019
  3. Accepted Manuscript published: June 20, 2019 (version 1)
  4. Version of Record published: August 2, 2019 (version 2)

Copyright

© 2019, Fabry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,356
    views
  • 487
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin H Fabry
  2. Filippo Ciabrelli
  3. Marzia Munafò
  4. Evelyn L Eastwood
  5. Emma Kneuss
  6. Ilaria Falciatori
  7. Federica A Falconio
  8. Gregory J Hannon
  9. Benjamin Czech
(2019)
piRNA-guided co-transcriptional silencing coopts nuclear export factors
eLife 8:e47999.
https://doi.org/10.7554/eLife.47999

Share this article

https://doi.org/10.7554/eLife.47999

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.