One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish

  1. Wenyuan Li
  2. Yage Zhang
  3. Bingzhou Han
  4. Lianyan Li
  5. Muhang Li
  6. Xiaochan Lu
  7. Cheng Chen
  8. Mengjia Lu
  9. Yujie Zhang
  10. Xuefeng Jia
  11. Zuoyan zhu
  12. Xiangjun Tong
  13. Bo Zhang  Is a corresponding author
  1. Peking University, China
  2. Peking University Shenzhen Graduate School, China
  3. Gcrispr (Tianjin) Genetic Technology, China

Abstract

CRISPR/Cas systems are widely used to knockout genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no 'two-in-one' KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Wenyuan Li

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yage Zhang

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bingzhou Han

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lianyan Li

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Muhang Li

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaochan Lu

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Cheng Chen

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Mengjia Lu

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yujie Zhang

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5038-1487
  10. Xuefeng Jia

    Gcrispr (Tianjin) Genetic Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zuoyan zhu

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xiangjun Tong

    College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Bo Zhang

    College of Life Sciences, Peking University, Beijing, China
    For correspondence
    bzhang@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6436-5629

Funding

National Key Research and Development Program of China (2018YFA0801000)

  • Bo Zhang

National Key Research and Development Program of China (2016YFA0100500)

  • Bo Zhang

National Key Basic Research Program of China (2015CB942803)

  • Bo Zhang

National Natural Science Foundation of China (31671500)

  • Bo Zhang

National Natural Science Foundation of China (31871458)

  • Bo Zhang

National Natural Science Foundation of China (81371264)

  • Bo Zhang

PKU Qidong-SLS Innovation Fund

  • Bo Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by Institutional Animal Care and Use Committee (IACUC) of Peking University. The reference from IACUC of Peking University is LSC-ZhangB-2.

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,538
    views
  • 1,160
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenyuan Li
  2. Yage Zhang
  3. Bingzhou Han
  4. Lianyan Li
  5. Muhang Li
  6. Xiaochan Lu
  7. Cheng Chen
  8. Mengjia Lu
  9. Yujie Zhang
  10. Xuefeng Jia
  11. Zuoyan zhu
  12. Xiangjun Tong
  13. Bo Zhang
(2019)
One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish
eLife 8:e48081.
https://doi.org/10.7554/eLife.48081

Share this article

https://doi.org/10.7554/eLife.48081

Further reading

    1. Genetics and Genomics
    Angela M Tuckowski, Safa Beydoun ... Scott F Leiser
    Research Article

    Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.

    1. Genetics and Genomics
    Junhong Choi, Wei Chen ... Jay Shendure
    Research Article

    One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here, we demonstrate a strategy termed ‘P3 editing’, which links protein-protein proximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.