Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila

  1. Noa Bielopolski
  2. Hoger Amin
  3. Anthi A Apostolopoulou
  4. Eyal Rozenfeld
  5. Hadas Lerner
  6. Wolf Huetteroth
  7. Andrew C Lin  Is a corresponding author
  8. Moshe Parnas  Is a corresponding author
  1. Tel Aviv University, Israel
  2. University of Sheffield, United Kingdom
  3. University of Leipzig, Germany

Abstract

Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-8 and Figures S1, S8.

Article and author information

Author details

  1. Noa Bielopolski

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Hoger Amin

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7884-4815
  3. Anthi A Apostolopoulou

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eyal Rozenfeld

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Hadas Lerner

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Wolf Huetteroth

    Institute for Biology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew C Lin

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    andrew.lin@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Moshe Parnas

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    mparnas@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9726-1511

Funding

European Commission (676844)

  • Moshe Parnas

European Commission (639489)

  • Andrew C Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Bielopolski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,717
    views
  • 670
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noa Bielopolski
  2. Hoger Amin
  3. Anthi A Apostolopoulou
  4. Eyal Rozenfeld
  5. Hadas Lerner
  6. Wolf Huetteroth
  7. Andrew C Lin
  8. Moshe Parnas
(2019)
Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila
eLife 8:e48264.
https://doi.org/10.7554/eLife.48264

Share this article

https://doi.org/10.7554/eLife.48264

Further reading

    1. Neuroscience
    Zachary Fournier, Leandro M Alonso, Eve Marder
    Research Article

    Circuit function results from both intrinsic conductances of network neurons and the synaptic conductances that connect them. In models of neural circuits, different combinations of maximal conductances can give rise to similar activity. We compared the robustness of a neural circuit to changes in their intrinsic versus synaptic conductances. To address this, we performed a sensitivity analysis on a population of conductance-based models of the pyloric network from the crustacean stomatogastric ganglion (STG). The model network consists of three neurons with nine currents: a sodium current (Na), three potassium currents (Kd, KCa, KA), two calcium currents (CaS and CaT), a hyperpolarization-activated current (H), a non-voltage-gated leak current (leak), and a neuromodulatory current (MI). The model cells are connected by seven synapses of two types, glutamatergic and cholinergic. We produced one hundred models of the pyloric network that displayed similar activities with values of maximal conductances distributed over wide ranges. We evaluated the robustness of each model to changes in their maximal conductances. We found that individual models have different sensitivities to changes in their maximal conductances, both in their intrinsic and synaptic conductances. As expected, the models become less robust as the extent of the changes increases. Despite quantitative differences in their robustness, we found that in all cases, the model networks are more sensitive to the perturbation of their intrinsic conductances than their synaptic conductances.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.