Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila

  1. Noa Bielopolski
  2. Hoger Amin
  3. Anthi A Apostolopoulou
  4. Eyal Rozenfeld
  5. Hadas Lerner
  6. Wolf Huetteroth
  7. Andrew C Lin  Is a corresponding author
  8. Moshe Parnas  Is a corresponding author
  1. Tel Aviv University, Israel
  2. University of Sheffield, United Kingdom
  3. University of Leipzig, Germany

Abstract

Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-8 and Figures S1, S8.

Article and author information

Author details

  1. Noa Bielopolski

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Hoger Amin

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7884-4815
  3. Anthi A Apostolopoulou

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eyal Rozenfeld

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Hadas Lerner

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Wolf Huetteroth

    Institute for Biology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew C Lin

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    andrew.lin@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Moshe Parnas

    Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    mparnas@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9726-1511

Funding

European Commission (676844)

  • Moshe Parnas

European Commission (639489)

  • Andrew C Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Bielopolski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,606
    views
  • 663
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noa Bielopolski
  2. Hoger Amin
  3. Anthi A Apostolopoulou
  4. Eyal Rozenfeld
  5. Hadas Lerner
  6. Wolf Huetteroth
  7. Andrew C Lin
  8. Moshe Parnas
(2019)
Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila
eLife 8:e48264.
https://doi.org/10.7554/eLife.48264

Share this article

https://doi.org/10.7554/eLife.48264

Further reading

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.