Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle

  1. Sumiaki Fukuda
  2. Akihiro Kaneshige
  3. Takayuki Kaji
  4. Yu-taro Noguchi
  5. Yusei Takemoto
  6. Lidan Zhang
  7. Kazutake Tsujikawa
  8. Hiroki Kokubo
  9. Akiyoshi Uezumi
  10. Kazumitsu Maehara
  11. Akihito Harada
  12. Yasuyuki Ohkawa
  13. So-ichiro Fukada  Is a corresponding author
  1. Osaka University, Japan
  2. Hiroshima University, Japan
  3. Tokyo Metropolitan Institute of Gerontology, Japan
  4. Kyushu University, Japan

Abstract

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sumiaki Fukuda

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Akihiro Kaneshige

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takayuki Kaji

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu-taro Noguchi

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yusei Takemoto

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Lidan Zhang

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazutake Tsujikawa

    Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroki Kokubo

    Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Akiyoshi Uezumi

    Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Kazumitsu Maehara

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Akihito Harada

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Yasuyuki Ohkawa

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. So-ichiro Fukada

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    For correspondence
    fukada@phs.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4051-5108

Funding

Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Scientific Research (B))

  • So-ichiro Fukada

Naito Foundation

  • So-ichiro Fukada

Nakatomi Foundation

  • So-ichiro Fukada

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • So-ichiro Fukada

NCNP (Intramural Research Grant for Neurological and Psychiatric Disorders)

  • So-ichiro Fukada

Japan Agency for Medical Research and Development (18am0101084j)

  • Kazutake Tsujikawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures used for experimental animals were approved by the Experimental Animal Care and Use Committee of Osaka University (approval number: 25-9-3, 30-15).

Copyright

© 2019, Fukuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,024
    views
  • 476
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumiaki Fukuda
  2. Akihiro Kaneshige
  3. Takayuki Kaji
  4. Yu-taro Noguchi
  5. Yusei Takemoto
  6. Lidan Zhang
  7. Kazutake Tsujikawa
  8. Hiroki Kokubo
  9. Akiyoshi Uezumi
  10. Kazumitsu Maehara
  11. Akihito Harada
  12. Yasuyuki Ohkawa
  13. So-ichiro Fukada
(2019)
Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle
eLife 8:e48284.
https://doi.org/10.7554/eLife.48284

Share this article

https://doi.org/10.7554/eLife.48284

Further reading

    1. Stem Cells and Regenerative Medicine
    Ryosuke Isotani, Masaki Igarashi ... Toshimasa Yamauchi
    Research Article

    Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.