Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle

  1. Sumiaki Fukuda
  2. Akihiro Kaneshige
  3. Takayuki Kaji
  4. Yu-taro Noguchi
  5. Yusei Takemoto
  6. Lidan Zhang
  7. Kazutake Tsujikawa
  8. Hiroki Kokubo
  9. Akiyoshi Uezumi
  10. Kazumitsu Maehara
  11. Akihito Harada
  12. Yasuyuki Ohkawa
  13. So-ichiro Fukada  Is a corresponding author
  1. Osaka University, Japan
  2. Hiroshima University, Japan
  3. Tokyo Metropolitan Institute of Gerontology, Japan
  4. Kyushu University, Japan

Abstract

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sumiaki Fukuda

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Akihiro Kaneshige

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takayuki Kaji

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu-taro Noguchi

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yusei Takemoto

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Lidan Zhang

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazutake Tsujikawa

    Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroki Kokubo

    Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Akiyoshi Uezumi

    Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Kazumitsu Maehara

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Akihito Harada

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Yasuyuki Ohkawa

    Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. So-ichiro Fukada

    Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
    For correspondence
    fukada@phs.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4051-5108

Funding

Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Scientific Research (B))

  • So-ichiro Fukada

Naito Foundation

  • So-ichiro Fukada

Nakatomi Foundation

  • So-ichiro Fukada

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • So-ichiro Fukada

NCNP (Intramural Research Grant for Neurological and Psychiatric Disorders)

  • So-ichiro Fukada

Japan Agency for Medical Research and Development (18am0101084j)

  • Kazutake Tsujikawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier Y Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: All procedures used for experimental animals were approved by the Experimental Animal Care and Use Committee of Osaka University (approval number: 25-9-3, 30-15).

Version history

  1. Received: May 8, 2019
  2. Accepted: September 19, 2019
  3. Accepted Manuscript published: September 23, 2019 (version 1)
  4. Version of Record published: September 30, 2019 (version 2)

Copyright

© 2019, Fukuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,778
    views
  • 449
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumiaki Fukuda
  2. Akihiro Kaneshige
  3. Takayuki Kaji
  4. Yu-taro Noguchi
  5. Yusei Takemoto
  6. Lidan Zhang
  7. Kazutake Tsujikawa
  8. Hiroki Kokubo
  9. Akiyoshi Uezumi
  10. Kazumitsu Maehara
  11. Akihito Harada
  12. Yasuyuki Ohkawa
  13. So-ichiro Fukada
(2019)
Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle
eLife 8:e48284.
https://doi.org/10.7554/eLife.48284

Share this article

https://doi.org/10.7554/eLife.48284

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs) (satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNAseq to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article Updated

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.