Abstract

Functional diversity of midbrain dopamine (DA) neurons ranges across multiple scales, from differences in intrinsic properties and connectivity to selective task engagement in behaving animals. Distinct in vitro biophysical features of DA neurons have been associated with different axonal projection targets. However, it is unknown how this translates to different firing patterns of projection-defined DA subpopulations in the intact brain. We combined retrograde tracing with single-unit recording and labelling in mouse brain to create an in vivo functional topography of the midbrain DA system. We identified differences in burst firing among DA neurons projecting to dorsolateral striatum. Bursting also differentiated DA neurons in the medial substantia nigra (SN) projecting either to dorsal or ventral striatum. We found differences in mean firing rates and pause durations among ventral tegmental area (VTA) DA neurons projecting to lateral or medial shell of nucleus accumbens. Our data establishes a high-resolution functional in vivo landscape of midbrain DA neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Navid Farassat

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. ​Kauê Machado Costa

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5562-6495
  3. Strahinja Stovanovic

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Albert

    Institute for Mathematics, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lora Kovacheva

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Josef Shin

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Egger

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Mahalakshmi Somayaji

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sevil Duvarci

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gaby Schneider

    Institute for Mathematics, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Jochen Roeper

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    For correspondence
    roeper@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2145-8742

Funding

National Institutes of Health (R01DA041705)

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (CRC 1080)

  • Jochen Roeper

Gutenberg Forschungskolleg

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (CRC 1193)

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (DFG Priority Program 1665 (SCHN 1370/02-1))

  • Gaby Schneider

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Ethics

Animal experimentation: All experiments and procedures involving mice were approved by the German Regierungspräsidium Darmstadt (V54-19c20/15-F40/28).

Version history

  1. Received: May 13, 2019
  2. Accepted: October 2, 2019
  3. Accepted Manuscript published: October 3, 2019 (version 1)
  4. Version of Record published: October 14, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,499
    views
  • 1,129
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Navid Farassat
  2. ​Kauê Machado Costa
  3. Strahinja Stovanovic
  4. Stefan Albert
  5. Lora Kovacheva
  6. Josef Shin
  7. Richard Egger
  8. Mahalakshmi Somayaji
  9. Sevil Duvarci
  10. Gaby Schneider
  11. Jochen Roeper
(2019)
In vivo functional diversity of midbrain dopamine neurons within identified axonal projections
eLife 8:e48408.
https://doi.org/10.7554/eLife.48408

Share this article

https://doi.org/10.7554/eLife.48408

Further reading

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.

    1. Neuroscience
    Shanka Subhra Mondal, Steven Frankland ... Jonathan D Cohen
    Research Article

    Deep neural networks have made tremendous gains in emulating human-like intelligence, and have been used increasingly as ways of understanding how the brain may solve the complex computational problems on which this relies. However, these still fall short of, and therefore fail to provide insight into how the brain supports strong forms of generalization of which humans are capable. One such case is out-of-distribution (OOD) generalization – successful performance on test examples that lie outside the distribution of the training set. Here, we identify properties of processing in the brain that may contribute to this ability. We describe a two-part algorithm that draws on specific features of neural computation to achieve OOD generalization, and provide a proof of concept by evaluating performance on two challenging cognitive tasks. First we draw on the fact that the mammalian brain represents metric spaces using grid cell code (e.g., in the entorhinal cortex): abstract representations of relational structure, organized in recurring motifs that cover the representational space. Second, we propose an attentional mechanism that operates over the grid cell code using determinantal point process (DPP), that we call DPP attention (DPP-A) – a transformation that ensures maximum sparseness in the coverage of that space. We show that a loss function that combines standard task-optimized error with DPP-A can exploit the recurring motifs in the grid cell code, and can be integrated with common architectures to achieve strong OOD generalization performance on analogy and arithmetic tasks. This provides both an interpretation of how the grid cell code in the mammalian brain may contribute to generalization performance, and at the same time a potential means for improving such capabilities in artificial neural networks.