1. Neuroscience
Download icon

In vivo functional diversity of midbrain dopamine neurons within identified axonal projections

Research Article
  • Cited 13
  • Views 4,193
  • Annotations
Cite this article as: eLife 2019;8:e48408 doi: 10.7554/eLife.48408

Abstract

Functional diversity of midbrain dopamine (DA) neurons ranges across multiple scales, from differences in intrinsic properties and connectivity to selective task engagement in behaving animals. Distinct in vitro biophysical features of DA neurons have been associated with different axonal projection targets. However, it is unknown how this translates to different firing patterns of projection-defined DA subpopulations in the intact brain. We combined retrograde tracing with single-unit recording and labelling in mouse brain to create an in vivo functional topography of the midbrain DA system. We identified differences in burst firing among DA neurons projecting to dorsolateral striatum. Bursting also differentiated DA neurons in the medial substantia nigra (SN) projecting either to dorsal or ventral striatum. We found differences in mean firing rates and pause durations among ventral tegmental area (VTA) DA neurons projecting to lateral or medial shell of nucleus accumbens. Our data establishes a high-resolution functional in vivo landscape of midbrain DA neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Navid Farassat

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. ​Kauê Machado Costa

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5562-6495
  3. Strahinja Stovanovic

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Albert

    Institute for Mathematics, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lora Kovacheva

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Josef Shin

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Egger

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Mahalakshmi Somayaji

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sevil Duvarci

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gaby Schneider

    Institute for Mathematics, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Jochen Roeper

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    For correspondence
    roeper@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2145-8742

Funding

National Institutes of Health (R01DA041705)

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (CRC 1080)

  • Jochen Roeper

Gutenberg Forschungskolleg

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (CRC 1193)

  • Jochen Roeper

Deutsche Forschungsgemeinschaft (DFG Priority Program 1665 (SCHN 1370/02-1))

  • Gaby Schneider

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and procedures involving mice were approved by the German Regierungspräsidium Darmstadt (V54-19c20/15-F40/28).

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Publication history

  1. Received: May 13, 2019
  2. Accepted: October 2, 2019
  3. Accepted Manuscript published: October 3, 2019 (version 1)
  4. Version of Record published: October 14, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,193
    Page views
  • 823
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Kai Hwang et al.
    Research Article Updated

    Hubs in the human brain support behaviors that arise from brain network interactions. Previous studies have identified hub regions in the human thalamus that are connected with multiple functional networks. However, the behavioral significance of thalamic hubs has yet to be established. Our framework predicts that thalamic subregions with strong hub properties are broadly involved in functions across multiple cognitive domains. To test this prediction, we studied human patients with focal thalamic lesions in conjunction with network analyses of the human thalamocortical functional connectome. In support of our prediction, lesions to thalamic subregions with stronger hub properties were associated with widespread deficits in executive, language, and memory functions, whereas lesions to thalamic subregions with weaker hub properties were associated with more limited deficits. These results highlight how a large-scale network model can broaden our understanding of thalamic function for human cognition.

    1. Neuroscience
    Zhe Zhang et al.
    Research Article Updated

    Reduced structural and functional interhemispheric connectivity correlates with the severity of Autism Spectrum Disorder (ASD) behaviors in humans. Little is known of how ASD-risk genes regulate callosal connectivity. Here, we show that Fmr1, whose loss-of-function leads to Fragile X Syndrome (FXS), cell autonomously promotes maturation of callosal excitatory synapses between somatosensory barrel cortices in mice. Postnatal, cell-autonomous deletion of Fmr1 in postsynaptic Layer (L) 2/3 or L5 neurons results in a selective weakening of AMPA receptor- (R), but not NMDA receptor-, mediated callosal synaptic function, indicative of immature synapses. Sensory deprivation by contralateral whisker trimming normalizes callosal input strength, suggesting that experience-driven activity of postsynaptic Fmr1 KO L2/3 neurons weakens callosal synapses. In contrast to callosal inputs, synapses originating from local L4 and L2/3 circuits are normal, revealing an input-specific role for postsynaptic Fmr1 in regulation of synaptic connectivity within local and callosal neocortical circuits. These results suggest direct cell autonomous and postnatal roles for FMRP in development of specific cortical circuits and suggest a synaptic basis for long-range functional underconnectivity observed in FXS patients.