Velocity coupling of grid modules enables stable embedding of a low dimensional variable in a high dimensional attractor

  1. Noga Mosheiff
  2. Yoram Burak  Is a corresponding author
  1. Hebrew University, Israel

Abstract

Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed representation across multiple neural populations (modules), each possessing a distinct spatial scale. The modular structure of the representation confers the grid cell neural code with large capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains the representation, and updates it based on self motion. Small incompatible drifts in different modules, driven by noise, can rapidly lead to large, abrupt shifts in the represented position, resulting in catastrophic readout errors. Here we propose a theoretical model of coupled modules. The coupling suppresses incompatible drifts, allowing for a stable embedding of a two dimensional variable (position) in a higher dimensional neural attractor, while preserving the large capacity. We propose that coupling of this type may be implemented by recurrent synaptic connectivity within the mEC with a relatively simple and biologically plausible structure.

Data availability

This is a theoretical work. There are no data sets associated with it.

Article and author information

Author details

  1. Noga Mosheiff

    Racah Institute of Physics, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3649-4183
  2. Yoram Burak

    Racah Institute of Physics, Hebrew University, Jerusalem, Israel
    For correspondence
    yoram.burak@elsc.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-8782

Funding

Israel Science Foundation (1745/18)

  • Yoram Burak

Israel Science Foundation (1978/13)

  • Yoram Burak

Gatsby Charitable Foundation

  • Yoram Burak

Dalia and Dan Maydan Fellowship

  • Noga Mosheiff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Mosheiff & Burak

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,758
    views
  • 312
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noga Mosheiff
  2. Yoram Burak
(2019)
Velocity coupling of grid modules enables stable embedding of a low dimensional variable in a high dimensional attractor
eLife 8:e48494.
https://doi.org/10.7554/eLife.48494

Share this article

https://doi.org/10.7554/eLife.48494

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Neuroscience
    Bharath Krishnan, Noah Cowan
    Insight

    Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.