1. Neuroscience
Download icon

Velocity coupling of grid modules enables stable embedding of a low dimensional variable in a high dimensional attractor

  1. Noga Mosheiff
  2. Yoram Burak  Is a corresponding author
  1. Hebrew University, Israel
Research Article
  • Cited 1
  • Views 771
  • Annotations
Cite this article as: eLife 2019;8:e48494 doi: 10.7554/eLife.48494

Abstract

Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed representation across multiple neural populations (modules), each possessing a distinct spatial scale. The modular structure of the representation confers the grid cell neural code with large capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains the representation, and updates it based on self motion. Small incompatible drifts in different modules, driven by noise, can rapidly lead to large, abrupt shifts in the represented position, resulting in catastrophic readout errors. Here we propose a theoretical model of coupled modules. The coupling suppresses incompatible drifts, allowing for a stable embedding of a two dimensional variable (position) in a higher dimensional neural attractor, while preserving the large capacity. We propose that coupling of this type may be implemented by recurrent synaptic connectivity within the mEC with a relatively simple and biologically plausible structure.

Article and author information

Author details

  1. Noga Mosheiff

    Racah Institute of Physics, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3649-4183
  2. Yoram Burak

    Racah Institute of Physics, Hebrew University, Jerusalem, Israel
    For correspondence
    yoram.burak@elsc.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-8782

Funding

Israel Science Foundation (1745/18)

  • Yoram Burak

Israel Science Foundation (1978/13)

  • Yoram Burak

Gatsby Charitable Foundation

  • Yoram Burak

Dalia and Dan Maydan Fellowship

  • Noga Mosheiff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Publication history

  1. Received: May 15, 2019
  2. Accepted: August 29, 2019
  3. Accepted Manuscript published: August 30, 2019 (version 1)
  4. Version of Record published: September 23, 2019 (version 2)

Copyright

© 2019, Mosheiff & Burak

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 771
    Page views
  • 140
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Ismail Uyanik et al.
    Research Article
    1. Neuroscience
    Milene R Malheiros-Lima et al.
    Research Article