DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila

Abstract

Studying how neural circuits orchestrate limbed behaviors requires the precise measurement of the positions of each appendage in 3-dimensional (3D) space. Deep neural networks can estimate 2-dimensional (2D) pose in freely behaving and tethered animals. However, the unique challenges associated with transforming these 2D measurements into reliable and precise 3D poses have not been addressed for small animals including the fly, Drosophila melanogaster. Here we present DeepFly3D, a software that infers the 3D pose of tethered, adult Drosophila using multiple camera images. DeepFly3D does not require manual calibration, uses pictorial structures to automatically detect and correct pose estimation errors, and uses active learning to iteratively improve performance. We demonstrate more accurate unsupervised behavioral embedding using 3D joint angles rather than commonly used 2D pose data. Thus, DeepFly3D enables the automated acquisition of Drosophila behavioral measurements at an unprecedented level of detail for a variety of biological applications.

Data availability

All data generated and analyzed during this study are included in the DeepFly3D GitHub site: https://github.com/NeLy-EPFL/DeepFly3D and in the Harvard Dataverse.

The following data sets were generated

Article and author information

Author details

  1. Semih Günel

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    For correspondence
    semih.gunel@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Helge Rhodin

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2692-0801
  3. Daniel Morales

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7469-0898
  4. João H Campagnolo

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavan Ramdya

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    For correspondence
    pavan.ramdya@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5425-4610
  6. Pascal Fua

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (175667)

  • Daniel Morales
  • Pavan Ramdya

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (181239)

  • Daniel Morales
  • Pavan Ramdya

EPFL (iPhD)

  • Semih Günel

Microsoft Research (JRC Project)

  • Helge Rhodin

Swiss Government Excellence Postdoctoral Scholarship (2018.0483)

  • Daniel Morales

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Günel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,202
    views
  • 896
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Semih Günel
  2. Helge Rhodin
  3. Daniel Morales
  4. João H Campagnolo
  5. Pavan Ramdya
  6. Pascal Fua
(2019)
DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila
eLife 8:e48571.
https://doi.org/10.7554/eLife.48571

Share this article

https://doi.org/10.7554/eLife.48571

Further reading

    1. Neuroscience
    Simonas Griesius, Amy Richardson, Dimitri Michael Kullmann
    Research Article

    Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.