DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila

Abstract

Studying how neural circuits orchestrate limbed behaviors requires the precise measurement of the positions of each appendage in 3-dimensional (3D) space. Deep neural networks can estimate 2-dimensional (2D) pose in freely behaving and tethered animals. However, the unique challenges associated with transforming these 2D measurements into reliable and precise 3D poses have not been addressed for small animals including the fly, Drosophila melanogaster. Here we present DeepFly3D, a software that infers the 3D pose of tethered, adult Drosophila using multiple camera images. DeepFly3D does not require manual calibration, uses pictorial structures to automatically detect and correct pose estimation errors, and uses active learning to iteratively improve performance. We demonstrate more accurate unsupervised behavioral embedding using 3D joint angles rather than commonly used 2D pose data. Thus, DeepFly3D enables the automated acquisition of Drosophila behavioral measurements at an unprecedented level of detail for a variety of biological applications.

Data availability

All data generated and analyzed during this study are included in the DeepFly3D GitHub site: https://github.com/NeLy-EPFL/DeepFly3D and in the Harvard Dataverse.

The following data sets were generated

Article and author information

Author details

  1. Semih Günel

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    For correspondence
    semih.gunel@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Helge Rhodin

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2692-0801
  3. Daniel Morales

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7469-0898
  4. João H Campagnolo

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavan Ramdya

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    For correspondence
    pavan.ramdya@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5425-4610
  6. Pascal Fua

    School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (175667)

  • Daniel Morales
  • Pavan Ramdya

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (181239)

  • Daniel Morales
  • Pavan Ramdya

EPFL (iPhD)

  • Semih Günel

Microsoft Research (JRC Project)

  • Helge Rhodin

Swiss Government Excellence Postdoctoral Scholarship (2018.0483)

  • Daniel Morales

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Günel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,315
    views
  • 903
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.48571

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.