ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling

  1. Panpan Hou
  2. Jingyi Shi
  3. Kelli McFarland White
  4. Yuan Gao
  5. Jianmin Cui  Is a corresponding author
  1. Washington University in St Louis, United States
  2. Tencent AI lab, China

Abstract

Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Panpan Hou

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Jingyi Shi

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    Jingyi Shi, is a co-founder of a startup company VivoCor LLC, which is targeting IKs for the treatment of cardiac arrhythmia.
  3. Kelli McFarland White

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Yuan Gao

    Tencent AI lab, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Jianmin Cui

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    For correspondence
    jcui@wustl.edu
    Competing interests
    Jianmin Cui, is a co-founder of a startup company VivoCor LLC, which is targeting IKs for the treatment of cardiac arrhythmia.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7694-2262

Funding

National Institute of Neurological Disorders and Stroke (R01 NS092570)

  • Jianmin Cui

National Heart, Lung, and Blood Institute (R01 HL126774)

  • Jianmin Cui

American Heart Association (AHA 18POST34030203)

  • Panpan Hou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Oocytes (at stage V or VI) were obtained from Xenopus laevis by laparotomy surgery, following the protocol approved by the Washington University Animal Studies Committee (Protocol #20160046).

Copyright

© 2019, Hou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,721
    views
  • 281
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Panpan Hou
  2. Jingyi Shi
  3. Kelli McFarland White
  4. Yuan Gao
  5. Jianmin Cui
(2019)
ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling
eLife 8:e48576.
https://doi.org/10.7554/eLife.48576

Share this article

https://doi.org/10.7554/eLife.48576

Further reading

    1. Structural Biology and Molecular Biophysics
    Sneha Menon, Subinoy Adhikari, Jagannath Mondal
    Research Article

    The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution. In particular, the presence of fasudil in the solvent either modulates pre-existing states of αS or gives rise to new conformational states of αS, akin to an ensemble-expansion mechanism. The ensembles display strong conformation-dependence in residue-wise interaction with the small molecule. A thermodynamic analysis indicates that small-molecule modulates the structural repertoire of αS by tuning protein backbone entropy, however entropy of the water remains unperturbed. Together, this study sheds light on the intricate interplay between small molecules and IDPs, offering insights into entropic modulation and ensemble expansion as key biophysical mechanisms driving potential therapeutics.

    1. Structural Biology and Molecular Biophysics
    Aivaras Vaškevičius, Denis Baronas ... Daumantas Matulis
    Research Article

    We designed novel pre-drug compounds that transform into an active form that covalently modifies particular His residue in the active site, a difficult task to achieve, and applied to carbonic anhydrase (CAIX), a transmembrane protein, highly overexpressed in hypoxic solid tumors, important for cancer cell survival and proliferation because it acidifies tumor microenvironment helping invasion and metastases processes. The designed compounds have several functionalities: (1) primary sulfonamide group recognizing carbonic anhydrases (CA), (2) high-affinity moieties specifically recognizing CAIX among all CA isozymes, and (3) forming a covalent bond with the His64 residue. Such targeted covalent compounds possess both high initial affinity and selectivity for the disease target protein followed by complete irreversible inactivation of the protein via covalent modification. Our designed prodrug candidates bearing moderately active pre-vinylsulfone esters or weakly active carbamates optimized for mild covalent modification activity to avoid toxic non-specific modifications and selectively target CAIX. The lead inhibitors reached 2 pM affinity, the highest among known CAIX inhibitors. The strategy could be used for any disease drug target protein bearing a His residue in the vicinity of the active site.