Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka  Is a corresponding author
  1. Hokkaido University School of Medicine, Japan

Abstract

Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.

Data availability

We now upload data files (in Matlab's MAT format) containing numerical data sufficient to reconstruct each main figure.

The following previously published data sets were used

Article and author information

Author details

  1. Masashi Kameda

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Shogo Ohmae

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1726-4961
  3. Masaki Tanaka

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    masaki@med.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-1314

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H03539)

  • Masaki Tanaka

Takeda Science Foundation

  • Masaki Tanaka

Japan Society for the Promotion of Science

  • Masashi Kameda

Ministry of Education, Culture, Sports, Science, and Technology (18H04928)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18H05523)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18J20197)

  • Masaki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were evaluated and approved by the Hokkaido University Animal Care and Use Committee (#18-0003).

Copyright

© 2019, Kameda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,749
    views
  • 267
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka
(2019)
Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum
eLife 8:e48702.
https://doi.org/10.7554/eLife.48702

Share this article

https://doi.org/10.7554/eLife.48702

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.