1. Neuroscience
Download icon

Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka  Is a corresponding author
  1. Hokkaido University School of Medicine, Japan
Research Article
  • Cited 6
  • Views 1,240
  • Annotations
Cite this article as: eLife 2019;8:e48702 doi: 10.7554/eLife.48702

Abstract

Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.

Data availability

We now upload data files (in Matlab's MAT format) containing numerical data sufficient to reconstruct each main figure.

The following previously published data sets were used

Article and author information

Author details

  1. Masashi Kameda

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Shogo Ohmae

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1726-4961
  3. Masaki Tanaka

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    masaki@med.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-1314

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H03539)

  • Masaki Tanaka

Takeda Science Foundation

  • Masaki Tanaka

Japan Society for the Promotion of Science

  • Masashi Kameda

Ministry of Education, Culture, Sports, Science, and Technology (18H04928)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18H05523)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18J20197)

  • Masaki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were evaluated and approved by the Hokkaido University Animal Care and Use Committee (#18-0003).

Reviewing Editor

  1. Jennifer L Raymond, Stanford School of Medicine, United States

Publication history

  1. Received: May 23, 2019
  2. Accepted: September 5, 2019
  3. Accepted Manuscript published: September 6, 2019 (version 1)
  4. Version of Record published: September 17, 2019 (version 2)

Copyright

© 2019, Kameda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,240
    Page views
  • 199
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    P Christiaan Klink et al.
    Research Article Updated

    Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

    1. Developmental Biology
    2. Neuroscience
    Eduardo Loureiro-Campos et al.
    Research Article

    The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.