1. Neuroscience
Download icon

Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka  Is a corresponding author
  1. Hokkaido University School of Medicine, Japan
Research Article
  • Cited 4
  • Views 951
  • Annotations
Cite this article as: eLife 2019;8:e48702 doi: 10.7554/eLife.48702

Abstract

Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.

Article and author information

Author details

  1. Masashi Kameda

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Shogo Ohmae

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1726-4961
  3. Masaki Tanaka

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    masaki@med.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-1314

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H03539)

  • Masaki Tanaka

Takeda Science Foundation

  • Masaki Tanaka

Japan Society for the Promotion of Science

  • Masashi Kameda

Ministry of Education, Culture, Sports, Science, and Technology (18H04928)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18H05523)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18J20197)

  • Masaki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were evaluated and approved by the Hokkaido University Animal Care and Use Committee (#18-0003).

Reviewing Editor

  1. Jennifer L Raymond, Stanford School of Medicine, United States

Publication history

  1. Received: May 23, 2019
  2. Accepted: September 5, 2019
  3. Accepted Manuscript published: September 6, 2019 (version 1)
  4. Version of Record published: September 17, 2019 (version 2)

Copyright

© 2019, Kameda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 951
    Page views
  • 157
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.

    1. Ecology
    2. Neuroscience
    Felix JH Hol et al.
    Tools and Resources

    Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.