Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka  Is a corresponding author
  1. Hokkaido University School of Medicine, Japan

Abstract

Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.

Data availability

We now upload data files (in Matlab's MAT format) containing numerical data sufficient to reconstruct each main figure.

The following previously published data sets were used

Article and author information

Author details

  1. Masashi Kameda

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Shogo Ohmae

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1726-4961
  3. Masaki Tanaka

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    masaki@med.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-1314

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H03539)

  • Masaki Tanaka

Takeda Science Foundation

  • Masaki Tanaka

Japan Society for the Promotion of Science

  • Masashi Kameda

Ministry of Education, Culture, Sports, Science, and Technology (18H04928)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18H05523)

  • Masaki Tanaka

Ministry of Education, Culture, Sports, Science, and Technology (18J20197)

  • Masaki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer L Raymond, Stanford School of Medicine, United States

Ethics

Animal experimentation: All experimental protocols were evaluated and approved by the Hokkaido University Animal Care and Use Committee (#18-0003).

Version history

  1. Received: May 23, 2019
  2. Accepted: September 5, 2019
  3. Accepted Manuscript published: September 6, 2019 (version 1)
  4. Version of Record published: September 17, 2019 (version 2)

Copyright

© 2019, Kameda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,689
    views
  • 255
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Masashi Kameda
  2. Shogo Ohmae
  3. Masaki Tanaka
(2019)
Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum
eLife 8:e48702.
https://doi.org/10.7554/eLife.48702

Share this article

https://doi.org/10.7554/eLife.48702

Further reading

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.

    1. Neuroscience
    Alina Tetereva, Narun Pat
    Research Article

    One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36–100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.