mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep

  1. Carmen Varela  Is a corresponding author
  2. Matthew A Wilson  Is a corresponding author
  1. Florida Atlantic University, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.

Data availability

Data files are available through the CRCNS website ('HC-24'); this includes data sets with raw data (LFP and units) recorded from 3 sessions, derived data (such as sleep-related events, like K-complexes, ripples and spindle cycles) as well as several matlab code to illustrate the main findings in the current manuscript. The data set and the documentation that describes it in detail is available through the CRCNS website ('HC-19' data set).

The following data sets were generated

Article and author information

Author details

  1. Carmen Varela

    Psychology, Florida Atlantic University, Jupiter, United States
    For correspondence
    varelac@fau.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0398-2567
  2. Matthew A Wilson

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mwilson@mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Caja Madrid Foundation (Convocatoria 2008)

  • Carmen Varela

Brain & Behavior Research Foundation (22852)

  • Carmen Varela

NSF STC award CCF-1231216 (CCF-1231216)

  • Matthew A Wilson

NIH grant TR01-GM10498 (TR01-GM10498)

  • Matthew A Wilson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Version history

  1. Received: May 29, 2019
  2. Accepted: June 11, 2020
  3. Accepted Manuscript published: June 11, 2020 (version 1)
  4. Version of Record published: June 26, 2020 (version 2)

Copyright

© 2020, Varela & Wilson

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,507
    views
  • 427
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Varela
  2. Matthew A Wilson
(2020)
mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep
eLife 9:e48881.
https://doi.org/10.7554/eLife.48881

Share this article

https://doi.org/10.7554/eLife.48881

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.