1. Neuroscience
Download icon

mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep

  1. Carmen Varela  Is a corresponding author
  2. Matthew A Wilson  Is a corresponding author
  1. Florida Atlantic University, United States
  2. Massachusetts Institute of Technology, United States
Research Article
  • Cited 7
  • Views 1,516
  • Annotations
Cite this article as: eLife 2020;9:e48881 doi: 10.7554/eLife.48881

Abstract

Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.

Data availability

Data files are available through the CRCNS website ('HC-24'); this includes data sets with raw data (LFP and units) recorded from 3 sessions, derived data (such as sleep-related events, like K-complexes, ripples and spindle cycles) as well as several matlab code to illustrate the main findings in the current manuscript. The data set and the documentation that describes it in detail is available through the CRCNS website ('HC-19' data set).

The following data sets were generated

Article and author information

Author details

  1. Carmen Varela

    Psychology, Florida Atlantic University, Jupiter, United States
    For correspondence
    varelac@fau.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0398-2567
  2. Matthew A Wilson

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mwilson@mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Caja Madrid Foundation (Convocatoria 2008)

  • Carmen Varela

Brain & Behavior Research Foundation (22852)

  • Carmen Varela

NSF STC award CCF-1231216 (CCF-1231216)

  • Matthew A Wilson

NIH grant TR01-GM10498 (TR01-GM10498)

  • Matthew A Wilson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Publication history

  1. Received: May 29, 2019
  2. Accepted: June 11, 2020
  3. Accepted Manuscript published: June 11, 2020 (version 1)
  4. Version of Record published: June 26, 2020 (version 2)

Copyright

© 2020, Varela & Wilson

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    Page views
  • 277
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    P Christiaan Klink et al.
    Research Article Updated

    Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

    1. Developmental Biology
    2. Neuroscience
    Eduardo Loureiro-Campos et al.
    Research Article

    The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.