Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging

  1. Aaron Benson Wong
  2. J Gerard G Borst  Is a corresponding author
  1. Erasmus Medical Center, Netherlands

Abstract

The dorsal (DCIC) and lateral cortices (LCIC) of the inferior colliculus are major targets of the auditory and non-auditory cortical areas, suggesting a role in complex multimodal information processing. However, relatively little is known about their functional organization. We utilized in vivo two-photon Ca2+ imaging in awake mice expressing GCaMP6s in GABAergic or non-GABAergic neurons in the IC to investigate their spatial organization. We found different classes of temporal responses, which we confirmed with simultaneous juxtacellular electrophysiology. Both GABAergic and non-GABAergic neurons showed spatial microheterogeneity in their temporal responses. In contrast, a robust, double rostromedial-caudolateral gradient of frequency tuning was conserved between the two groups, and even among the subclasses. This, together with the existence of a subset of neurons sensitive to spontaneous movements, provides functional evidence for redefining the border between DCIC and LCIC.

Data availability

Source data files have been provided for Figures 1,4-8, and Figure 3 -figure supplement 1.

Article and author information

Author details

  1. Aaron Benson Wong

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1650-2710
  2. J Gerard G Borst

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    g.borst@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6092-1544

Funding

Agentschap NL (FES0908)

  • J Gerard G Borst

European Commission (660157-OPTIMAPIC)

  • Aaron Benson Wong
  • J Gerard G Borst

ZonMw (91218033)

  • Aaron Benson Wong
  • J Gerard G Borst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments in this study were performed in accordance with the ethical guidelines for laboratory animals within our institute and with European guidelines. The study was carried out under the project license (AVD2016789) approved by the Centrale Commissie Dierproeven (CCD) and the animal ethical committee (Instantie voor Dierenwelzijn; IvD) of the Erasmus MC. All recovery surgeries were performed under general isoflurane anesthesia supplemented with lidocaine, carprofen and buprenorphine as peri-operative analgesics. Terminal transcardiac perfusion was performed under pentobarbital anesthesia. Every effort was made to minimize suffering.

Copyright

© 2019, Wong & Borst

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,842
    views
  • 404
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron Benson Wong
  2. J Gerard G Borst
(2019)
Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging
eLife 8:e49091.
https://doi.org/10.7554/eLife.49091

Share this article

https://doi.org/10.7554/eLife.49091

Further reading

    1. Neuroscience
    Paul I Jaffe, Gustavo X Santiago-Reyes ... Russell A Poldrack
    Research Article

    Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.

    1. Neuroscience
    Aneri Soni, Michael J Frank
    Research Article

    How and why is working memory (WM) capacity limited? Traditional cognitive accounts focus either on limitations on the number or items that can be stored (slots models), or loss of precision with increasing load (resource models). Here, we show that a neural network model of prefrontal cortex and basal ganglia can learn to reuse the same prefrontal populations to store multiple items, leading to resource-like constraints within a slot-like system, and inducing a trade-off between quantity and precision of information. Such ‘chunking’ strategies are adapted as a function of reinforcement learning and WM task demands, mimicking human performance and normative models. Moreover, adaptive performance requires a dynamic range of dopaminergic signals to adjust striatal gating policies, providing a new interpretation of WM difficulties in patient populations such as Parkinson’s disease, ADHD, and schizophrenia. These simulations also suggest a computational rather than anatomical limit to WM capacity.