Electric field causes volumetric changes in the human brain

  1. Miklos Argyelan  Is a corresponding author
  2. Leif Oltedal
  3. Zhi-De Deng
  4. Benjamin Wade
  5. Marom Bikson
  6. Andrea Joanlanne
  7. Sohag Sanghani
  8. Hauke Bartsch
  9. Marta Cano
  10. Anders M Dale
  11. Udo Dannlowski
  12. Annemiek Dols
  13. Verena Enneking
  14. Randall Espinoza
  15. Ute Kessler
  16. Katherine L Narr
  17. Ketil J Oedegaard
  18. Mardien L Oudega
  19. Ronny Redlich
  20. Max L Stek
  21. Akihiro Takamiya
  22. Louise Emsell
  23. Filip Bouckaert
  24. Pascal Sienaert
  25. Jesus Pujol
  26. Indira Tendolkar
  27. Philip van Eijndhoven
  28. Georgios Petrides
  29. Anil K Malhotra
  30. Christopher Abbott
  1. The Zucker Hillside Hospital, United States
  2. Center for Neuroscience, Feinstein Institute for Medical Research, United States
  3. Zucker School of Medicine, United States
  4. University of Bergen, Norway
  5. Haukeland University Hospital, Mohn Medical Imaging and Visualization Centre, Norway
  6. National Institute of Mental Health, United States
  7. University of California, Los Angeles, United States
  8. The City College of the City University of New York, United States
  9. University of California, San Diego, United States
  10. Bellvitge University Hospital-IDIBELL, Spain
  11. CIBERSAM, Carlos III Health Institute, Spain
  12. University of Muenster, Germany
  13. Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Netherlands
  14. Haukeland University Hospital, University of Bergen, Norway
  15. Keio University School of Medicine, Japan
  16. Center for Psychiatry and Behavioral Science, Komagino Hospital, Japan
  17. KU Leuven, Belgium
  18. Hospital del Mar, Spain
  19. Radboud University Medical Center, Netherlands
  20. Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Netherlands
  21. University of Duisburg-Essen, Germany
  22. University of New Mexico School of Medicine, United States
6 figures, 2 tables and 8 additional files

Figures

Electric Field (EF) and volume change across 85 brain regions.

Upper panel first row: Mean EF across 85 brain regions; second row: the effect size of volume changes between baseline and at the end of the course of ECT across 85 regions. Lower panel, left: Effect sizes of right unilateral stimulations were consistently higher on the right side than on the left side. Lower panel, right: Scatter plot of regional EF versus regional volume change (r = 0.38; p <0.001; df = 83; t = 3.77). (d) = Cohen’s d effect size..

Figure 1—source data 1

Mean electric field and volume change in 85 brain regions.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig1-data1-v2.csv
Laterality differences in EF and ∆vol (upper panel) as well as the relationship between laterality between EF/∆vol (lower panel).

Regression line indicates the correlation between laterality indices of EF and volume change (r = 0.32; p<0.05; df = 40; t = 2.13).

Figure 2—source data 1

Mean electric field and volume change asymteries in corresponding 42 brain regions.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig2-data1-v2.csv
Figure 3 with 1 supplement
Individual specific relationship between EF and volume change in the hippocampus.

Left: Scatterplot of EF versus volume change in the hippocampus (t = 5.97, df = 300, r = 0.33, p < 0.0001, left and right side together). There is a significant relationship on the left side (orange dots; t = 4.53, df = 149, r = 0.35, p < 0.0001), but not on the right side (probably due to ceiling effect) (t = 1.59, df = 149, r = 0.13, p = 0.11). Right: The difference in right and left hippocampal volume changes is significant (t = 7.76, df = 150, mean difference = 0.011, p < 0.0001).

Figure 3—source data 1

Left and right hippocampal EF and volume change in 151 individual.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig3-data1-v2.csv
Figure 3—figure supplement 1
Hippocampal EF and volume change.

To test the specificity of our measures in the left hippocampus (FDR corrected finding) we permutated the labels across the 85 ROIs, both for the volume changes (left) and for the EF values (right) and calculated correlations between the EF and volume change of these regions, respectively. This way we received 85 different values, where one of them was the ‘correct’ correlation, indicated with red dots. The ‘correct’ correlations between the EF and corresponding volume outperformed the other correlations (were in the top five percentile) from non-matching pairs, indicating that our findings were not merely a general correlation with some average values across regions, further strengthening the casual link between EF and volume change.

Figure 3—figure supplement 1—source data 1

Hippocampal EF and volume change: permutation values.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig3-figsupp1-data1-v2.csv
Figure 4 with 1 supplement
Individual specific relationship between EF and volume change in the amygdala.

Left: Scatterplot of EF versus volume change in the amygdala (t = 11.35, df = 300, r = 0.55, p<0.0001; left and right side together). Both the left (orange dots) and right (blue dots) hemisphere shows highly significant relationships (t = 4.01, df = 149, r = 0.31, p=0.0001; and t = 4.02, df = 149, r = 0.31, p=0.0001). Right: The difference in right and left amygdala volume changes is significant (t = 13.58, df = 150, mean difference = 0.029, p<0.0001).

Figure 4—source data 1

Left and right amygdala EF and volume change in 151 individual.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig4-data1-v2.csv
Figure 4—figure supplement 1
Amygdala EF and volume change.

To test the specificity of our measures in the left amygdala (FDR corrected finding) we permutated the labels across the 85 ROIs, both for the volume changes (left) and for the EF values (right) and calculated correlations between the EF and volume change of these regions, respectively. This way we received 85 different values, where one of them was the ‘correct’ correlation, indicated with red dots. The ‘correct’ correlations between the EF and corresponding volume outperformed the other correlations (were in the top five percentile) from non-matching pairs, indicating that our findings were not merely a general correlation with some average values across regions, further strengthening the casual link between EF and volume change.

Figure 4—figure supplement 1—source data 1

Amygdala EF and volume change: permutation values.

https://cdn.elifesciences.org/articles/49115/elife-49115-fig4-figsupp1-data1-v2.csv
Illustration of the methods.

We analyzed longitudinal structural MRI data from 151 individuals. We calculated the volume change and the magnitude of electrical field in 85 regions across the human cortex and subcortical structures.

Author response image 1

Tables

Table 1
The relationship between volume changes and EF across individuals (Δ Vol ~ EF + Age + ECTnum).
roitEFpEFtAgetECTnumBHEFFDR
1Δ VOLLeft.Cerebellum.Cortex−0.36680.7143−0.11501.93680.8205
2Δ VOLLeft.Thalamus.Proper0.02440.9805−0.40462.86960.9952
3Δ VOLLeft.Caudate0.65550.5132−0.83012.64280.6924
4Δ VOLLeft.Putamen0.57370.5671−0.59921.32030.7212
5Δ VOLLeft.Pallidum0.00600.99520.10261.22950.9952
6Δ VOLBrain.Stem1.21140.22780.85361.23090.4466
7Δ VOLLeft.Hippocampus4.51020.0000−2.68143.32210.0012
8Δ VOLLeft.Amygdala3.90690.0001−1.05722.10180.0061
9Δ VOLLeft.Accumbens.area2.02380.0449−3.44561.72460.1737
10Δ VOLLeft.VentralDC0.17400.86210.06052.26140.9395
11Δ VOLRight.Cerebellum.Cortex−0.55640.57880.06771.32120.7235
12Δ VOLRight.Thalamus.Proper0.45820.64750.35414.07870.7712
13Δ VOLRight.Caudate1.22930.22101.02541.50970.4466
14Δ VOLRight.Putamen1.07240.2854−0.51121.49870.4756
15Δ VOLRight.Pallidum0.60450.54650.80162.95890.7181
16Δ VOLRight.Hippocampus1.50900.1336−1.29243.24730.3441
17Δ VOLRight.Amygdala2.99450.0032−0.60874.26030.0344
18Δ VOLRight.Accumbens.area1.95630.0524−0.87823.52280.1937
19Δ VOLRight.VentralDC0.34880.72780.51970.74380.8248
20Δ VOLctx.lh.bankssts1.17570.2417−0.41022.58010.4466
21Δ VOLctx.lh.caudalanteriorcingulate1.34040.1823−1.28812.23300.4254
22Δ VOLctx.lh.caudalmiddlefrontal−1.89890.0596−0.38042.00870.2112
23Δ VOLctx.lh.cuneus0.98270.32740.10372.03480.5352
24Δ VOLctx.lh.entorhinal3.22290.0016−1.24471.66590.0335
25Δ VOLctx.lh.fusiform3.07170.0026−0.18062.13190.0344
26Δ VOLctx.lh.inferiorparietal1.51310.13250.85152.30770.3441
27Δ VOLctx.lh.inferiortemporal2.69850.00780.64151.91310.0577
28Δ VOLctx.lh.isthmuscingulate−0.32750.7438−0.43442.90600.8319
29Δ VOLctx.lh.lateraloccipital1.19160.23540.36691.27520.4466
30Δ VOLctx.lh.lateralorbitofrontal1.42740.1557−0.00811.57580.3780
31Δ VOLctx.lh.lingual0.13910.88960.35062.47450.9572
32Δ VOLctx.lh.medialorbitofrontal1.07440.2845−0.12461.18520.4756
33Δ VOLctx.lh.middletemporal2.06790.0405−0.37802.26000.1720
34Δ VOLctx.lh.parahippocampal1.26830.2068−0.24462.83730.4466
35Δ VOLctx.lh.paracentral−2.08290.03910.25114.09370.1720
36Δ VOLctx.lh.parsopercularis−0.69490.4883−0.78221.84350.6694
37Δ VOLctx.lh.parsorbitalis0.80570.4218−1.04270.95240.6289
38Δ VOLctx.lh.parstriangularis0.82280.4120−1.21572.79770.6254
39Δ VOLctx.lh.pericalcarine0.44260.6587−0.04791.84630.7712
40Δ VOLctx.lh.postcentral0.86920.3862−1.76552.51450.5969
41Δ VOLctx.lh.posteriorcingulate−0.86980.3859−0.69613.31930.5969
42Δ VOLctx.lh.precentral−0.72790.4679−1.28842.42340.6682
43Δ VOLctx.lh.precuneus−1.58790.1145−0.43533.67290.3441
44Δ VOLctx.lh.rostralanteriorcingulate1.33150.1852−0.44490.56300.4254
45Δ VOLctx.lh.rostralmiddlefrontal−0.71920.4732−1.62051.19360.6682
46Δ VOLctx.lh.superiorfrontal−1.20730.2293−0.58512.10650.4466
47Δ VOLctx.lh.superiorparietal−1.74230.08360.69523.32880.2734
48Δ VOLctx.lh.superiortemporal2.28200.0240−2.08681.63930.1199
49Δ VOLctx.lh.supramarginal0.57170.5685−0.24672.12820.7212
50Δ VOLctx.lh.frontalpole−0.20290.8395−0.29040.47760.9267
51Δ VOLctx.lh.temporalpole2.52880.0125−0.07311.31670.0762
52Δ VOLctx.lh.transversetemporal0.43870.6616−0.46172.18170.7712
53Δ VOLctx.rh.bankssts0.11210.91092.07772.99910.9678
54Δ VOLctx.rh.caudalanteriorcingulate−1.42950.15511.29352.40160.3780
55Δ VOLctx.rh.caudalmiddlefrontal−2.95690.00361.69432.60650.0344
56Δ VOLctx.rh.cuneus−0.00870.9930−1.18062.40170.9952
57Δ VOLctx.rh.entorhinal1.25140.21290.78972.47220.4466
58Δ VOLctx.rh.fusiform1.53800.12630.79974.78540.3441
59Δ VOLctx.rh.inferiorparietal−2.99020.00331.65200.71140.0344
60Δ VOLctx.rh.inferiortemporal0.93000.35401.93103.34550.5677
61Δ VOLctx.rh.isthmuscingulate0.03250.97410.42301.14930.9952
62Δ VOLctx.rh.lateraloccipital1.17960.24010.60951.51610.4466
63Δ VOLctx.rh.lateralorbitofrontal0.53470.59370.33932.92400.7314
64Δ VOLctx.rh.lingual−0.07530.9401−1.95553.52580.9865
65Δ VOLctx.rh.medialorbitofrontal0.70900.47951.54792.34190.6682
66Δ VOLctx.rh.middletemporal−0.60050.54922.12753.67810.7181
67Δ VOLctx.rh.parahippocampal1.52170.13030.50573.18740.3441
68Δ VOLctx.rh.paracentral−3.51010.00062.18092.27180.0170
69Δ VOLctx.rh.parsopercularis−2.55850.01162.88542.94590.0756
70Δ VOLctx.rh.parsorbitalis1.08720.2788−0.58122.37370.4756
71Δ VOLctx.rh.parstriangularis−1.24680.21461.06862.60860.4466
72Δ VOLctx.rh.pericalcarine1.58780.1146−0.00962.28150.3441
73Δ VOLctx.rh.postcentral−1.75650.08121.29433.06050.2734
74Δ VOLctx.rh.posteriorcingulate−1.51710.13152.07161.47310.3441
75Δ VOLctx.rh.precentral−2.49180.01390.99673.70130.0762
76Δ VOLctx.rh.precuneus−2.02310.0450−0.19212.54190.1737
77Δ VOLctx.rh.rostralanteriorcingulate2.20830.02881.37342.36060.1362
78Δ VOLctx.rh.rostralmiddlefrontal−2.68420.00810.58042.22350.0577
79Δ VOLctx.rh.superiorfrontal−3.00130.00321.10113.26990.0344
80Δ VOLctx.rh.superiorparietal−2.74950.00670.90142.07790.0574
81Δ VOLctx.rh.superiortemporal0.43770.66231.24554.40020.7712
82Δ VOLctx.rh.supramarginal−2.47940.01432.74083.04290.0762
83Δ VOLctx.rh.frontalpole1.12560.2623−0.17841.91850.4644
84Δ VOLctx.rh.temporalpole0.72740.46820.50993.76960.6682
85Δ VOLctx.rh.transversetemporal1.14260.25510.64483.24050.4614
Table 2
Clinical and demographics summary.
Table 2A Overall Summary
SiteNAge
(sd)
Medications
(med. free, SSRI/SNRI, TCA, AP*)
Average
number of
ECT
Baseline MADRSΔ MADRS (%)
All15157.5
(17.1)
69,65,10,6210.633.961.3
Female9256.4 (18.4)42,36,8,4210.434.463.4
Male5959.3
(14.7)
27,29,2,2010.933.358.1
Table 2B Site Summary
SiteNAge (mean)Age (sd)Baseline MADRSΔ MADRS (%)
13039.8712.6840.7345.12
23364.488.9331.3669.48
31673.6212.4529.5677.24
42346.879.1929.9643.18
5262.500.7136.7532.03
61848.5016.7733.8357.12
72972.667.5735.0779.13
  1. *med. free: medication free, SSRI: selective serotonin reuptake inhibitor, SNRI: serotonin and norepinephrine reuptake inhibitors, TCA: tricyclic antidepressants, AP: antipsychotic medications, there were not patients on MAO inhibitors.

Additional files

Source code 1

Once EF and ΔVol were collected across 85 ROI in 151 subjects, all the rest of the calculations were carried out in R environment.

This file is the source code of these calculations organized in org-mode (https://orgmode.org/) for reproducibility.

https://cdn.elifesciences.org/articles/49115/elife-49115-code1-v2.org
Supplementary file 1

Volume changes following electroconvulsive treatment (ECT).

One sample t-test in each ROIs. The table indicates t, uncorrected p, Cohen’s d effect size, and FDR corrected p values. This sample is a sub-cohort of a recent publication of 331 subjects (Ousdal et al., 2019). In contrast with that publication we included patients with RUL only electrode placement.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp1-v2.docx
Supplementary file 2

The laterality of volume changes after RUL ECT.

The table contains the results of 42 pairwise t-tests between the volume changes of the right and the left side of the corresponding regions. The table indicates t, uncorrected p, mean, Cohen’s d effect size and FDR corrected p values.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp2-v2.docx
Supplementary file 3

The relationship between clinical response and volume change across individuals.

The table indicates the t values of the corresponding clinical covariates modeled as fixed effects: volume change, age, and number of ECT.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp3-v2.docx
Supplementary file 4

The relationship between clinical response and electric field across individuals.

The table indicates the t values of the corresponding clinical covariates modeled as fixed effects: electric field, age, and number of ECT.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp4-v2.docx
Supplementary file 5

The relationship between the baseline volume and age across 85 ROIs.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp5-v2.docx
Supplementary file 6

MRI summary.

The table indicates the parameters of the structural image acquisition across sites.

https://cdn.elifesciences.org/articles/49115/elife-49115-supp6-v2.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/49115/elife-49115-transrepform-v2.pdf

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miklos Argyelan
  2. Leif Oltedal
  3. Zhi-De Deng
  4. Benjamin Wade
  5. Marom Bikson
  6. Andrea Joanlanne
  7. Sohag Sanghani
  8. Hauke Bartsch
  9. Marta Cano
  10. Anders M Dale
  11. Udo Dannlowski
  12. Annemiek Dols
  13. Verena Enneking
  14. Randall Espinoza
  15. Ute Kessler
  16. Katherine L Narr
  17. Ketil J Oedegaard
  18. Mardien L Oudega
  19. Ronny Redlich
  20. Max L Stek
  21. Akihiro Takamiya
  22. Louise Emsell
  23. Filip Bouckaert
  24. Pascal Sienaert
  25. Jesus Pujol
  26. Indira Tendolkar
  27. Philip van Eijndhoven
  28. Georgios Petrides
  29. Anil K Malhotra
  30. Christopher Abbott
(2019)
Electric field causes volumetric changes in the human brain
eLife 8:e49115.
https://doi.org/10.7554/eLife.49115