1. Neuroscience
Download icon

High and asymmetric somato-dendritic coupling of V1 layer 5 neurons independent of visual stimulation and locomotion

  1. Valerio Francioni
  2. Zahid Padamsey
  3. Nathalie L Rochefort  Is a corresponding author
  1. University of Edinburgh, United Kingdom
Research Article
  • Cited 1
  • Views 1,436
  • Annotations
Cite this article as: eLife 2019;8:e49145 doi: 10.7554/eLife.49145

Abstract

Active dendrites impact sensory processing and behaviour. However, it remains unclear how active dendritic integration relates to somatic output in vivo. We imaged semi-simultaneously GCaMP6s signals in the soma, trunk and distal tuft dendrites of layer 5 pyramidal neurons in the awake mouse primary visual cortex. We found that apical tuft signals were dominated by widespread, highly correlated calcium transients throughout the tuft. While these signals were highly coupled to trunk and somatic transients, the frequency of calcium transients was found to decrease in a distance-dependent manner from soma to tuft. Ex vivo recordings suggest that low-frequency back-propagating action potentials underlie the distance-dependent loss of signals, while coupled somato-dendritic signals can be triggered by high-frequency somatic bursts or strong apical tuft depolarization. Visual stimulation and locomotion increased neuronal activity without affecting somato-dendritic coupling. High, asymmetric somato-dendritic coupling is therefore a widespread feature of layer 5 neurons activity in vivo.

Article and author information

Author details

  1. Valerio Francioni

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Zahid Padamsey

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nathalie L Rochefort

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    n.rochefort@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3498-6221

Funding

Wellcome (102857/Z/13/Z)

  • Nathalie L Rochefort

Royal Society (102857/Z/13/Z)

  • Nathalie L Rochefort

University Of Edinburgh (PhD fellowship)

  • Valerio Francioni

Simons Initiative for the Developing Brain (Project grant)

  • Nathalie L Rochefort

European Union's FP7 program (CIG 631770)

  • Nathalie L Rochefort

RS MacDonald Charitable Trust (Seedcorn Grant)

  • Nathalie L Rochefort

Royal Society (Royal Commission for the Exhibition 1851)

  • Zahid Padamsey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and procedures involving animals were approved by the University of Edinburgh Animal Welfare and the ethical review board (AWERB) and performed under the appropriate PIL and PPL license from the UK Home Office in accordance with the Animal (Scientific Procedures) act 1986 and the European Directive 86/609/EEC on the protection of animals used for experimental purposes.

Reviewing Editor

  1. Yukiko Goda, RIKEN, Japan

Publication history

  1. Received: July 10, 2019
  2. Accepted: December 22, 2019
  3. Accepted Manuscript published: December 27, 2019 (version 1)
  4. Version of Record published: January 21, 2020 (version 2)
  5. Version of Record updated: January 23, 2020 (version 3)

Copyright

© 2019, Francioni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,436
    Page views
  • 201
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)