A mechanism in Agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome

  1. Guanglin Xing
  2. Hongyang Jing
  3. Lei Zhang
  4. Yu Cao
  5. Lei Li
  6. Kai Zhao
  7. Zhaoqi Dong
  8. Wenbing Chen
  9. Hongsheng Wang
  10. Rangjuan Cao
  11. Wen-Cheng Xiong
  12. Lin Mei  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Augusta University, United States

Abstract

Neuromuscular junction is a synapse between motoneurons and skeletal muscles, where acetylcholine receptors (AChRs) are concentrated to control muscle contraction. Studies of this synapse have contributed to our understanding of synapse assembly and pathological mechanisms of neuromuscular disorders. Nevertheless, underlying mechanisms of NMJ formation was not well understood. To this end, we took a novel approach - studying mutant genes implicated in congenital myasthenic syndrome (CMS). We showed that knock-in mice carrying N88K, a prevalent CMS mutation of Rapsyn (Rapsn), died soon after birth with profound NMJ deficits. Rapsn is an adapter protein that bridges AChRs to the cytoskeleton and possesses E3 ligase activity. In investigating how N88K impairs the NMJ, we uncovered a novel signaling pathway by which Agrin-LRP4-MuSK induces tyrosine phosphorylation of Rapsn, which is required for its self-association and E3 ligase activity. Our results also provide insight into pathological mechanisms of CMS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data about statistical results are provided in excel files, including Figures 1E-J, 2E-H, 2M, 2N, 3A, 3B, 3D, 3E, 4B, 4F, 5D, 5F, 5H, 6D, 6G, 6I, 7B, 7F, 7H, 7J, 7L, 7N, 8B, 8C, 8D, ; Figure 1-figure supplement 1C, 1E, 1H, Figure 4-figure supplement 1B, Figure 4-figure supplement 2B and 2D, Figure 5-figure supplement 1D, Figure 7-figure supplement 1C and E.

Article and author information

Author details

  1. Guanglin Xing

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hongyang Jing

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lei Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Cao

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3708-575X
  5. Lei Li

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai Zhao

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhaoqi Dong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wenbing Chen

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongsheng Wang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rangjuan Cao

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Wen-Cheng Xiong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Lin Mei

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    For correspondence
    lin.mei@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-1229

Funding

NIH Blueprint for Neuroscience Research (RES220572)

  • Lin Mei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (2017-0115) of the University of Case Western Reserve University. Animal protocols have been approved by the Institutional Animal Care and Use Committee of Case Western Reserve University.

Copyright

© 2019, Xing et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guanglin Xing
  2. Hongyang Jing
  3. Lei Zhang
  4. Yu Cao
  5. Lei Li
  6. Kai Zhao
  7. Zhaoqi Dong
  8. Wenbing Chen
  9. Hongsheng Wang
  10. Rangjuan Cao
  11. Wen-Cheng Xiong
  12. Lin Mei
(2019)
A mechanism in Agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome
eLife 8:e49180.
https://doi.org/10.7554/eLife.49180

Share this article

https://doi.org/10.7554/eLife.49180

Further reading

    1. Medicine
    2. Neuroscience
    Ayni Sharif, Matthew S Jeffers ... Manoj M Lalu
    Research Article

    C-C chemokine receptor type 5 (CCR5) antagonists may improve both acute stroke outcome and long-term recovery. Despite their evaluation in ongoing clinical trials, gaps remain in the evidence supporting their use. With a panel of patients with lived experiences of stroke, we performed a systematic review of animal models of stroke that administered a CCR5 antagonist and assessed infarct size or behavioural outcomes. MEDLINE, Web of Science, and Embase were searched. Article screening and data extraction were completed in duplicate. We pooled outcomes using random effects meta-analyses. We assessed risk of bias using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool and alignment with the Stroke Treatment Academic Industry Roundtable (STAIR) and Stroke Recovery and Rehabilitation Roundtable (SRRR) recommendations. Five studies representing 10 experiments were included. CCR5 antagonists reduced infarct volume (standard mean difference −1.02; 95% confidence interval −1.58 to −0.46) when compared to stroke-only controls. Varied timing of CCR5 administration (pre- or post-stroke induction) produced similar benefit. CCR5 antagonists significantly improved 11 of 16 behavioural outcomes reported. High risk of bias was present in all studies and critical knowledge gaps in the preclinical evidence were identified using STAIR/SRRR. CCR5 antagonists demonstrate promise; however, rigorously designed preclinical studies that better align with STAIR/SRRR recommendations and downstream clinical trials are warranted. Prospective Register of Systematic Reviews (PROSPERO CRD42023393438).

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.