Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn

Abstract

Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kelly M Smith

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3039-5002
  2. Tyler J Browne

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivia C Davis

    Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8792-7324
  4. A Coyle

    Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kieran A Boyle

    Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Masahiko Watanabe

    Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-7138
  7. Sally A Dickinson

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jacqueline A Iredale

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Mark A Gradwell

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Phillip Jobling

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert J Callister

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Christopher V Dayas

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    For correspondence
    christopher.dayas@newcastle.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  13. David I Hughes

    Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    David.I.Hughes@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1260-3362
  14. Brett A Graham

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    For correspondence
    brett.graham@newcastle.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8070-0503

Funding

National Health and Medical Research Council (631000)

  • Robert J Callister
  • Brett A Graham

National Health and Medical Research Council (1043933)

  • Robert J Callister
  • David I Hughes
  • Brett A Graham

Biotechnology and Biological Sciences Research Council (BB/J000620/1)

  • David I Hughes

Biotechnology and Biological Sciences Research Council (BB/P007996/1)

  • David I Hughes

National Health and Medical Research Council (1144638)

  • Robert J Callister
  • Christopher V Dayas
  • David I Hughes
  • Brett A Graham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies carried out in Glasgow were in accordance with the European Community directive 86/609/EEC and UK Animals (Scientific Procedures) Act 1986. All studies carried out at University of Newcastle were in accordance with the Animal Research Act 1985 (NSW), under the guidelines of the National Health and Medical Research Council Code for the Care and Use of Animals for Scientific Purposes in Australia (2013). All animal handling and experimental procedures were performed under approved institutional animal care and ethics committee protocols (University of Newcastle: A-2013-312 and A2016-603; University of Glasgow)

Copyright

© 2019, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,998
    views
  • 425
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelly M Smith
  2. Tyler J Browne
  3. Olivia C Davis
  4. A Coyle
  5. Kieran A Boyle
  6. Masahiko Watanabe
  7. Sally A Dickinson
  8. Jacqueline A Iredale
  9. Mark A Gradwell
  10. Phillip Jobling
  11. Robert J Callister
  12. Christopher V Dayas
  13. David I Hughes
  14. Brett A Graham
(2019)
Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn
eLife 8:e49190.
https://doi.org/10.7554/eLife.49190

Share this article

https://doi.org/10.7554/eLife.49190

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.