Taste bud formation depends on taste nerves

  1. Di Fan
  2. Zoubida Chettouh
  3. Giacomo Consalez
  4. Jean-François Brunet  Is a corresponding author
  1. Ecole Normale Supérieure, France
  2. San Raffaele Scientific Institute, Italy

Abstract

It has been known for more than a century that, in adult vertebrates, the maintenance of taste buds depends on their afferent nerves. However, the initial formation of taste buds is proposed to be nerve-independent in amphibians, and evidence to the contrary in mammals has been endlessly debated, mostly due to indirect and incomplete means to impede innervation during the protracted perinatal period of taste bud differentiation. Here, by genetically ablating, in mice, all somatic (i.e. touch) or visceral (i.e. taste) neurons for the oral cavity, we show that the latter but not the former are absolutely required for the proper formation of their target organs, the taste buds.

Data availability

All data generated or analysed during this study are included in the manuscript, and in the source data files.

Article and author information

Author details

  1. Di Fan

    Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoubida Chettouh

    Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Giacomo Consalez

    San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-François Brunet

    Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France
    For correspondence
    jfbrunet@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1985-6103

Funding

Agence Nationale de la Recherche (ANR-12-BSV4-0007-01)

  • Jean-François Brunet

Agence Nationale de la Recherche (ANR-10-LABX-54 MEMOLIFE)

  • Jean-François Brunet

Agence Nationale de la Recherche (ANR-11-IDEX-0001-02 PSL research University)

  • Jean-François Brunet

Fondation pour la Recherche Médicale (DEQ 2000326472)

  • Jean-François Brunet

Agence Nationale de la Recherche (ANR-17-CE16-00006-01)

  • Jean-François Brunet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All animal studies were done in accordance with the guidelines issued by the French Ministry of Agriculture and have been approved by the Direction Départementale des Services Vétérinaires de Paris.

Version history

  1. Received: June 11, 2019
  2. Accepted: September 23, 2019
  3. Accepted Manuscript published: October 1, 2019 (version 1)
  4. Version of Record published: October 9, 2019 (version 2)

Copyright

© 2019, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,438
    views
  • 405
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Di Fan
  2. Zoubida Chettouh
  3. Giacomo Consalez
  4. Jean-François Brunet
(2019)
Taste bud formation depends on taste nerves
eLife 8:e49226.
https://doi.org/10.7554/eLife.49226

Share this article

https://doi.org/10.7554/eLife.49226

Further reading

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.