Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance

  1. Ramesh Chennupati
  2. Angela Wirth
  3. Julie Favre
  4. Rui Li
  5. Rémy Bonnavion
  6. Young-June Jin
  7. Astrid Wietelmann
  8. Frank Schweda
  9. Nina Wettschureck
  10. Daniel Henrion
  11. Stefan Offermanns  Is a corresponding author
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. University of Heidelberg, Germany
  3. UMR CNRS 6015 - INSERM 1083, Université d'Angers, France
  4. University of Regensburg, Germany

Abstract

Myogenic vasoconstriction is an autoregulatory function of small arteries. Recently, G-protein-coupled receptors have been involved in myogenic vasoconstriction, but the downstream signalling mechanisms and the in-vivo-function of this myogenic autoregulation are poorly understood. Here, we show that small arteries from mice with smooth muscle-specific loss of G12/G13 or the Rho guanine nucleotide exchange factor ARHGEF12 have lost myogenic vasoconstriction. This defect was accompanied by loss of RhoA activation, while vessels showed normal increases in intracellular [Ca2+]. In the absence of myogenic vasoconstriction, perfusion of peripheral organs was increased, systemic vascular resistance was reduced and cardiac output and left ventricular mass were increased. In addition, animals with defective myogenic vasoconstriction showed aggravated hypotension in response to endotoxin. We conclude that G12/G13- and Rho-mediated signaling plays a key role in myogenic vasoconstriction and that myogenic tone is required to maintain local and systemic vascular resistance under physiological and pathological condition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.

Article and author information

Author details

  1. Ramesh Chennupati

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela Wirth

    Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julie Favre

    Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Rui Li

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rémy Bonnavion

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Young-June Jin

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Astrid Wietelmann

    Scientific Service Group Nuclear Magnetic Resonance Imaging, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Frank Schweda

    Institute of Physiology, University of Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nina Wettschureck

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Henrion

    Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Stefan Offermanns

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    stefan.offermanns@mpi-bn.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8676-6805

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Stefan Offermanns

This study was funded by the Max Planck Society.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Ethics

Animal experimentation: All animal care and use procedures in this study were approved by the local authorities (protocol numbers: B2-1031, B2-1166, B2-1069 Regierungspräsidia Karlsruhe and Darmstadt).

Version history

  1. Received: June 16, 2019
  2. Accepted: September 24, 2019
  3. Accepted Manuscript published: September 24, 2019 (version 1)
  4. Version of Record published: October 4, 2019 (version 2)

Copyright

© 2019, Chennupati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,577
    Page views
  • 224
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramesh Chennupati
  2. Angela Wirth
  3. Julie Favre
  4. Rui Li
  5. Rémy Bonnavion
  6. Young-June Jin
  7. Astrid Wietelmann
  8. Frank Schweda
  9. Nina Wettschureck
  10. Daniel Henrion
  11. Stefan Offermanns
(2019)
Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance
eLife 8:e49374.
https://doi.org/10.7554/eLife.49374

Share this article

https://doi.org/10.7554/eLife.49374

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.