Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance

  1. Ramesh Chennupati
  2. Angela Wirth
  3. Julie Favre
  4. Rui Li
  5. Rémy Bonnavion
  6. Young-June Jin
  7. Astrid Wietelmann
  8. Frank Schweda
  9. Nina Wettschureck
  10. Daniel Henrion
  11. Stefan Offermanns  Is a corresponding author
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. University of Heidelberg, Germany
  3. UMR CNRS 6015 - INSERM 1083, Université d'Angers, France
  4. University of Regensburg, Germany

Abstract

Myogenic vasoconstriction is an autoregulatory function of small arteries. Recently, G-protein-coupled receptors have been involved in myogenic vasoconstriction, but the downstream signalling mechanisms and the in-vivo-function of this myogenic autoregulation are poorly understood. Here, we show that small arteries from mice with smooth muscle-specific loss of G12/G13 or the Rho guanine nucleotide exchange factor ARHGEF12 have lost myogenic vasoconstriction. This defect was accompanied by loss of RhoA activation, while vessels showed normal increases in intracellular [Ca2+]. In the absence of myogenic vasoconstriction, perfusion of peripheral organs was increased, systemic vascular resistance was reduced and cardiac output and left ventricular mass were increased. In addition, animals with defective myogenic vasoconstriction showed aggravated hypotension in response to endotoxin. We conclude that G12/G13- and Rho-mediated signaling plays a key role in myogenic vasoconstriction and that myogenic tone is required to maintain local and systemic vascular resistance under physiological and pathological condition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.

Article and author information

Author details

  1. Ramesh Chennupati

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela Wirth

    Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julie Favre

    Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Rui Li

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rémy Bonnavion

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Young-June Jin

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Astrid Wietelmann

    Scientific Service Group Nuclear Magnetic Resonance Imaging, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Frank Schweda

    Institute of Physiology, University of Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nina Wettschureck

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Henrion

    Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Stefan Offermanns

    Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    stefan.offermanns@mpi-bn.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8676-6805

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Stefan Offermanns

This study was funded by the Max Planck Society.

Ethics

Animal experimentation: All animal care and use procedures in this study were approved by the local authorities (protocol numbers: B2-1031, B2-1166, B2-1069 Regierungspräsidia Karlsruhe and Darmstadt).

Copyright

© 2019, Chennupati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,687
    views
  • 233
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramesh Chennupati
  2. Angela Wirth
  3. Julie Favre
  4. Rui Li
  5. Rémy Bonnavion
  6. Young-June Jin
  7. Astrid Wietelmann
  8. Frank Schweda
  9. Nina Wettschureck
  10. Daniel Henrion
  11. Stefan Offermanns
(2019)
Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance
eLife 8:e49374.
https://doi.org/10.7554/eLife.49374

Share this article

https://doi.org/10.7554/eLife.49374

Further reading

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.