1. Developmental Biology
Download icon

Prolonged ovarian storage of mature Drosophila oocytes dramatically increases meiotic spindle instability

  1. Ethan Joseph Greenblatt
  2. Rebecca Obniski
  3. Claire Mical
  4. Allan C Spradling  Is a corresponding author
  1. Howard Hughes Medical Institute, Carnegie Institution for Science, United States
Research Article
  • Cited 5
  • Views 1,723
  • Annotations
Cite this article as: eLife 2019;8:e49455 doi: 10.7554/eLife.49455

Abstract

Human oocytes frequently generate aneuploid embryos that subsequently miscarry. In contrast, Drosophila oocytes from outbred laboratory stocks develop fully regardless of maternal age. Since mature Drosophila oocytes are not extensively stored in the ovary under laboratory conditions like they are in the wild, we developed a system to investigate how storage affects oocyte quality. The developmental capacity of stored mature Drosophila oocytes decays in a precise manner over 14 days at 25oC. These oocytes are transcriptionally inactive and persist using ongoing translation of stored mRNAs. Ribosome profiling revealed a progressive 2.3-fold decline in average translational efficiency during storage that correlates with oocyte functional decay. Although normal bipolar meiotic spindles predominate during the first week, oocytes stored for longer periods increasingly show tripolar, monopolar and other spindle defects, and give rise to embryos that fail to develop due to aneuploidy. Thus, meiotic chromosome segregation in mature Drosophila oocytes is uniquely sensitive to prolonged storage. Our work suggests the chromosome instability of human embryos could be mitigated by reducing the period of time mature human oocytes are stored in the ovary prior to ovulation.

Article and author information

Author details

  1. Ethan Joseph Greenblatt

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Rebecca Obniski

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Claire Mical

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Allan C Spradling

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    For correspondence
    spradling@ciwemb.edu
    Competing interests
    Allan C Spradling, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5251-1801

Funding

Howard Hughes Medical Institute

  • Allan C Spradling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, HHMI, University of California, Berkeley, United States

Publication history

  1. Received: June 18, 2019
  2. Accepted: November 17, 2019
  3. Accepted Manuscript published: November 22, 2019 (version 1)
  4. Version of Record published: December 11, 2019 (version 2)

Copyright

© 2019, Greenblatt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,723
    Page views
  • 253
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Feng Wang et al.
    Research Article Updated

    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.