Prolonged ovarian storage of mature Drosophila oocytes dramatically increases meiotic spindle instability

  1. Ethan Joseph Greenblatt
  2. Rebecca Obniski
  3. Claire Mical
  4. Allan C Spradling  Is a corresponding author
  1. Howard Hughes Medical Institute, Carnegie Institution for Science, United States

Abstract

Human oocytes frequently generate aneuploid embryos that subsequently miscarry. In contrast, Drosophila oocytes from outbred laboratory stocks develop fully regardless of maternal age. Since mature Drosophila oocytes are not extensively stored in the ovary under laboratory conditions like they are in the wild, we developed a system to investigate how storage affects oocyte quality. The developmental capacity of stored mature Drosophila oocytes decays in a precise manner over 14 days at 25oC. These oocytes are transcriptionally inactive and persist using ongoing translation of stored mRNAs. Ribosome profiling revealed a progressive 2.3-fold decline in average translational efficiency during storage that correlates with oocyte functional decay. Although normal bipolar meiotic spindles predominate during the first week, oocytes stored for longer periods increasingly show tripolar, monopolar and other spindle defects, and give rise to embryos that fail to develop due to aneuploidy. Thus, meiotic chromosome segregation in mature Drosophila oocytes is uniquely sensitive to prolonged storage. Our work suggests the chromosome instability of human embryos could be mitigated by reducing the period of time mature human oocytes are stored in the ovary prior to ovulation.

Data availability

Data has been uploaded to BioProjects at NCBI under PRJNA573922.

The following data sets were generated

Article and author information

Author details

  1. Ethan Joseph Greenblatt

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Rebecca Obniski

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Claire Mical

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Allan C Spradling

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    For correspondence
    spradling@ciwemb.edu
    Competing interests
    Allan C Spradling, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5251-1801

Funding

Howard Hughes Medical Institute

  • Allan C Spradling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, HHMI, University of California, Berkeley, United States

Version history

  1. Received: June 18, 2019
  2. Accepted: November 17, 2019
  3. Accepted Manuscript published: November 22, 2019 (version 1)
  4. Version of Record published: December 11, 2019 (version 2)

Copyright

© 2019, Greenblatt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,523
    views
  • 406
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ethan Joseph Greenblatt
  2. Rebecca Obniski
  3. Claire Mical
  4. Allan C Spradling
(2019)
Prolonged ovarian storage of mature Drosophila oocytes dramatically increases meiotic spindle instability
eLife 8:e49455.
https://doi.org/10.7554/eLife.49455

Share this article

https://doi.org/10.7554/eLife.49455

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.