Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes

Abstract

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor a in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Ra deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.

Data availability

Sequencing data have been deposited to GEO.

The following data sets were generated

Article and author information

Author details

  1. Prashant Rajbhandari

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    prashant.rajbhandari@gmail.com
    Competing interests
    No competing interests declared.
  2. Douglas Arneson

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Sydney K Hart

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. In Sook Ahn

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Graciel Diamante

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Luis C Santos

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Nima Zaghari

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. An-Chieh Feng

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Brandon J Thomas

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Laurent Vergnes

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Stephen D Lee

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Abha K Rajbhandari

    Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  13. Karen Reue

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Stephen T Smale

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  15. Xia Yang

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  16. Peter Tontonoz

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ptontonoz@mednet.ucla.edu
    Competing interests
    Peter Tontonoz, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1259-0477

Funding

National Institutes of Health (K99 DK114571)

  • Prashant Rajbhandari

National Institutes of Health (DK063491)

  • Peter Tontonoz

National Institutes of Health (DK120851)

  • Peter Tontonoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (99-131) of the University of California, Los Angeles.

Copyright

© 2019, Rajbhandari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.49501

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.