Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes

  1. Prashant Rajbhandari  Is a corresponding author
  2. Douglas Arneson
  3. Sydney K Hart
  4. In Sook Ahn
  5. Graciel Diamante
  6. Luis C Santos
  7. Nima Zaghari
  8. An-Chieh Feng
  9. Brandon J Thomas
  10. Laurent Vergnes
  11. Stephen D Lee
  12. Abha K Rajbhandari
  13. Karen Reue
  14. Stephen T Smale
  15. Xia Yang
  16. Peter Tontonoz  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. Icahn School of Medicine at Mount Sinai, United States

Abstract

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor a in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Ra deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.

Data availability

Sequencing data have been deposited to GEO.

The following data sets were generated

Article and author information

Author details

  1. Prashant Rajbhandari

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    prashant.rajbhandari@gmail.com
    Competing interests
    No competing interests declared.
  2. Douglas Arneson

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Sydney K Hart

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. In Sook Ahn

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Graciel Diamante

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Luis C Santos

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Nima Zaghari

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. An-Chieh Feng

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Brandon J Thomas

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Laurent Vergnes

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Stephen D Lee

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Abha K Rajbhandari

    Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  13. Karen Reue

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Stephen T Smale

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  15. Xia Yang

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  16. Peter Tontonoz

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ptontonoz@mednet.ucla.edu
    Competing interests
    Peter Tontonoz, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1259-0477

Funding

National Institutes of Health (K99 DK114571)

  • Prashant Rajbhandari

National Institutes of Health (DK063491)

  • Peter Tontonoz

National Institutes of Health (DK120851)

  • Peter Tontonoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (99-131) of the University of California, Los Angeles.

Reviewing Editor

  1. Michael Czech, University of Massachusetts Medical School, United States

Publication history

  1. Received: June 19, 2019
  2. Accepted: October 22, 2019
  3. Accepted Manuscript published: October 23, 2019 (version 1)
  4. Version of Record published: November 7, 2019 (version 2)

Copyright

© 2019, Rajbhandari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,871
    Page views
  • 1,677
    Downloads
  • 68
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prashant Rajbhandari
  2. Douglas Arneson
  3. Sydney K Hart
  4. In Sook Ahn
  5. Graciel Diamante
  6. Luis C Santos
  7. Nima Zaghari
  8. An-Chieh Feng
  9. Brandon J Thomas
  10. Laurent Vergnes
  11. Stephen D Lee
  12. Abha K Rajbhandari
  13. Karen Reue
  14. Stephen T Smale
  15. Xia Yang
  16. Peter Tontonoz
(2019)
Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes
eLife 8:e49501.
https://doi.org/10.7554/eLife.49501

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Yang S Chen, Wanfu Hou ... Brian M Zid
    Research Article Updated

    During times of unpredictable stress, organisms must adapt their gene expression to maximize survival. Along with changes in transcription, one conserved means of gene regulation during conditions that quickly repress translation is the formation of cytoplasmic phase-separated mRNP granules such as P-bodies and stress granules. Previously, we identified that distinct steps in gene expression can be coupled during glucose starvation as promoter sequences in the nucleus are able to direct the subcellular localization and translatability of mRNAs in the cytosol. Here, we report that Rvb1 and Rvb2, conserved ATPase proteins implicated as protein assembly chaperones and chromatin remodelers, were enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that we previously found to be transcriptionally upregulated but translationally downregulated during glucose starvation in yeast. Engineered Rvb1/Rvb2-binding on mRNAs was sufficient to sequester mRNAs into mRNP granules and repress their translation. Additionally, this Rvb tethering to the mRNA drove further transcriptional upregulation of the target genes. Further, we found that depletion of Rvb2 caused decreased alternative glucose metabolism gene mRNA induction, but upregulation of protein synthesis during glucose starvation. Overall, our results point to Rvb1/Rvb2 coupling transcription, mRNA granular localization, and translatability of mRNAs during glucose starvation. This Rvb-mediated rapid gene regulation could potentially serve as an efficient recovery plan for cells after stress removal.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Tolulope Sokoya, Jan Parolek ... Joost CM Holthuis
    Research Article Updated

    Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.