1. Neuroscience
Download icon

Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training

  1. Youna Vandaele  Is a corresponding author
  2. Nagaraj R Mahajan
  3. David Joshua Ottenheimer
  4. Jocelyn M Richard
  5. Shreesh P Mysore
  6. Patricia H Janak  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Minnesota, United States
Research Article
  • Cited 12
  • Views 2,880
  • Annotations
Cite this article as: eLife 2019;8:e49536 doi: 10.7554/eLife.49536

Abstract

Hypotheses of striatal orchestration of behavior ascribe distinct functions to striatal subregions, with the dorsolateral striatum (DLS) especially implicated in habitual and skilled performance. Thus neural activity patterns recorded from the DLS, but not the dorsomedial striatum (DMS), should be correlated with habitual and automatized performance. Here, we recorded DMS and DLS neural activity in rats during training in a task promoting habitual lever pressing. Despite improving performance across sessions, clear changes in corresponding neural activity patterns were not evident in DMS or DLS during early training. Although DMS and DLS activity patterns were distinct during early training, their activity was similar following extended training. Finally, performance after extended training was not associated with DMS disengagement, as would be predicted from prior work. These results suggest that behavioral sequences may continue to engage both striatal regions long after initial acquisition, when skilled performance is consolidated.

Data availability

Behavioral and single unit recording data have been deposited on G-Node, as well as the Matlab codes used to analyze the data and generate the figures.

The following data sets were generated

Article and author information

Author details

  1. Youna Vandaele

    Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
    For correspondence
    youna.vandaele@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8389-8850
  2. Nagaraj R Mahajan

    Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Joshua Ottenheimer

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Balitmore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4882-1898
  4. Jocelyn M Richard

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5750-0418
  5. Shreesh P Mysore

    Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7781-8252
  6. Patricia H Janak

    Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
    For correspondence
    patricia.janak@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3333-9049

Funding

National Institute for Health Research (R01DA035943)

  • Patricia H Janak

National Institute on Alcohol Abuse and Alcoholism (R01AA026306)

  • Patricia H Janak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals (National Research Council, 1996), and was approved by the institutional animal care and use committee of Johns Hopkins University (protocols #RA17A244).

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Publication history

  1. Received: June 20, 2019
  2. Accepted: October 16, 2019
  3. Accepted Manuscript published: October 17, 2019 (version 1)
  4. Version of Record published: October 31, 2019 (version 2)

Copyright

© 2019, Vandaele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    Page views
  • 452
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Li Hou et al.
    Research Article Updated

    Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty-acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.

    1. Neuroscience
    Krishna N Badhiwala et al.
    Research Article

    Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra’s diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.