Neural mechanisms of economic choices in mice

  1. Masaru Kuwabara
  2. Ningdong Kang
  3. Timothy E Holy
  4. Camillo Padoa-Schioppa  Is a corresponding author
  1. Washington University in St Louis, United States

Abstract

Economic choices entail computing and comparing subjective values. Evidence from primates indicates that this behavior relies on the orbitofrontal cortex. Conversely, previous work in rodents provided conflicting results. Here we present a mouse model of economic choice behavior, and we show that the lateral orbital (LO) area is intimately related to the decision process. In the experiments, mice chose between different juices offered in variable amounts. Choice patterns closely resembled those measured in primates. Optogenetic inactivation of LO dramatically disrupted choices by inducing erratic changes of relative value and by increasing choice variability. Neuronal recordings revealed that different groups of cells encoded the values of individual options, the binary choice outcome and the chosen value. These groups match those previously identified in primates, except that the neuronal representation in mice is spatial (in monkeys it is good-based). Our results lay the foundations for a circuit-level analysis of economic decisions.

Data availability

Data and analysis files included as supplementary information

Article and author information

Author details

  1. Masaru Kuwabara

    Department of Neuroscience, Washington University in St Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ningdong Kang

    Department of Neuroscience, Washington University in St Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy E Holy

    Department of Neuroscience, Washington University in St Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Camillo Padoa-Schioppa

    Department of Neuroscience, Washington University in St Louis, Saint Louis, United States
    For correspondence
    camillo@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7519-8790

Funding

National Institute on Drug Abuse (R21-DA042882)

  • Camillo Padoa-Schioppa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: All experimental procedures conformed to the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at Washington University in St Louis (protocol # 20160167).

Version history

  1. Received: June 25, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: February 25, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Kuwabara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,298
    views
  • 644
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Masaru Kuwabara
  2. Ningdong Kang
  3. Timothy E Holy
  4. Camillo Padoa-Schioppa
(2020)
Neural mechanisms of economic choices in mice
eLife 9:e49669.
https://doi.org/10.7554/eLife.49669

Share this article

https://doi.org/10.7554/eLife.49669

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.