CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility

  1. Lindsay K Festa
  2. Elena Irollo
  3. Brian J Platt
  4. Yuzen Tian
  5. Stan Floresco
  6. Olimpia Meucci  Is a corresponding author
  1. Drexel University College of Medicine, United States
  2. University of British Columbia, Canada

Abstract

Synaptodendritic pruning is a common cause of cognitive decline in neurological disorders, including HIV-associated neurocognitive disorders (HAND). HAND persists in treated patients as a result of chronic inflammation and low-level expression of viral proteins, though the mechanisms involved in synaptic damage are unclear. Here, we report that the chemokine CXCL12 recoups both cognitive performance and synaptodendritic health in a rodent model of HAND, which recapitulates the neuroinflammatory state of virally controlled individuals and the associated structural/functional deficiencies. CXCL12 preferentially regulates plastic thin spines on layer II/III pyramidal neurons of the medial prefrontal cortex via CXCR4-dependent stimulation of the Rac1/PAK actin polymerization pathway, leading to increased spine density and improved flexible behavior. Our studies unveil a critical role of CXCL12/CXCR4 signaling in spine dynamics and cognitive flexibility, suggesting that HAND - or other diseases driven by spine loss - may be reversible and upturned by targeting Rac1-dependent processes in cortical neurons.

Data availability

All data presented in this manuscript are available as source data files.

Article and author information

Author details

  1. Lindsay K Festa

    Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5419-9532
  2. Elena Irollo

    Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian J Platt

    Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuzen Tian

    Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stan Floresco

    Department of Psychology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Olimpia Meucci

    Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
    For correspondence
    om29@drexel.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8333-4804

Funding

National Institute on Drug Abuse (DA015014)

  • Olimpia Meucci

National Institute on Drug Abuse (DA032444)

  • Olimpia Meucci

National Institute on Drug Abuse (DA040519)

  • Olimpia Meucci

National Institute of Mental Health (MH078795)

  • Lindsay K Festa

Natural Sciences and Engineering Research Council of Canada

  • Stan Floresco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Beth Stevens, Boston Children's Hospital, United States

Ethics

Animal experimentation: This study was performed using rats singly housed in isolation in our Association for Assessment and Accreditation of Laboratory Animal Care-accredited barrier facilities in accordance with the National Institutes of Health guidelines and institutional approval by the Institutional Animal Care and Use Committee (Drexel University protocol #20733 and 20732).

Version history

  1. Received: August 12, 2019
  2. Accepted: January 21, 2020
  3. Accepted Manuscript published: January 23, 2020 (version 1)
  4. Version of Record published: February 7, 2020 (version 2)

Copyright

© 2020, Festa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,446
    Page views
  • 167
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsay K Festa
  2. Elena Irollo
  3. Brian J Platt
  4. Yuzen Tian
  5. Stan Floresco
  6. Olimpia Meucci
(2020)
CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility
eLife 9:e49717.
https://doi.org/10.7554/eLife.49717

Share this article

https://doi.org/10.7554/eLife.49717

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.