1. Neuroscience
Download icon

Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn

  1. Kwan Yeop Lee
  2. Stéphanie Ratté
  3. Steven A Prescott  Is a corresponding author
  1. The Hospital for Sick Children, Canada
Research Article
  • Cited 4
  • Views 1,853
  • Annotations
Cite this article as: eLife 2019;8:e49753 doi: 10.7554/eLife.49753


Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia – the misperception of light touch as painful – occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.

Article and author information

Author details

  1. Kwan Yeop Lee

    Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Stéphanie Ratté

    Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Steven A Prescott

    Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3827-4512


Canadian Institutes of Health Research (PJT-153161)

  • Steven A Prescott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: All experimental procedures were approved by the Animal Care Committee at the Hospital for Sick Children (Animal Use Protocol #22919 and #22576) and were performed in accordance to guidelines from the Canadian Council on Animal Care. For in vivo experiments, animals were anesthetized with urethane (20% in normal saline; 1.2 g/kg i.p.). To prepare slices for in vitro experiments, animals were anesthetized with 4% isoflurane.

Reviewing Editor

  1. Claire Wyart, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France

Publication history

  1. Received: June 27, 2019
  2. Accepted: November 18, 2019
  3. Accepted Manuscript published: November 19, 2019 (version 1)
  4. Version of Record published: December 2, 2019 (version 2)


© 2019, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,853
    Page views
  • 291
  • 4

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shenghong He et al.
    Research Article Updated

    Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Julien G Roth et al.
    Tools and Resources Updated

    Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.