Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes

  1. Natalia Wesolowska
  2. Ivan Avilov
  3. Pedro Machado
  4. Celina Geiss
  5. Hiroshi Kondo
  6. Masashi Mori
  7. Peter Lenart  Is a corresponding author
  1. European Molecular Biology Laboratory (EMBL), Germany
  2. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin 'shell' in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining membrane stretches accumulate NPCs associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. Thereby, we reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts such as nuclear rupture observed in cancer cells.

Data availability

Full resolution EM montages are provided as supplemental files.

Article and author information

Author details

  1. Natalia Wesolowska

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Ivan Avilov

    Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pedro Machado

    Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Celina Geiss

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hiroshi Kondo

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Masashi Mori

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Lenart

    Cell Biology and Biophysics Unit, Max Planck Institute for Biophysical Chemistry, Heidelberg, Germany
    For correspondence
    plenart@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3927-248X

Funding

Deutsche Forschungsgemeinschaft (SPP 1464)

  • Natalia Wesolowska

European Molecular Biology Laboratory

  • Natalia Wesolowska
  • Pedro Machado
  • Celina Geiss
  • Hiroshi Kondo
  • Masashi Mori
  • Peter Lenart

Max Planck Society

  • Ivan Avilov
  • Peter Lenart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. R Dyche Mullins, University of California, San Francisco, United States

Version history

  1. Received: June 28, 2019
  2. Accepted: January 24, 2020
  3. Accepted Manuscript published: January 28, 2020 (version 1)
  4. Version of Record published: February 18, 2020 (version 2)

Copyright

© 2020, Wesolowska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,251
    views
  • 671
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natalia Wesolowska
  2. Ivan Avilov
  3. Pedro Machado
  4. Celina Geiss
  5. Hiroshi Kondo
  6. Masashi Mori
  7. Peter Lenart
(2020)
Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes
eLife 9:e49774.
https://doi.org/10.7554/eLife.49774

Share this article

https://doi.org/10.7554/eLife.49774

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.