1. Plant Biology
Download icon

An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species

  1. Hiroaki Adachi
  2. Mauricio Contreras
  3. Adeline Harant
  4. Chih-hang Wu
  5. Lida Derevnina
  6. Toshiyuki Sakai
  7. Cian Duggan
  8. Eleonora Moratto
  9. Tolga O Bozkurt
  10. Abbas Maqbool
  11. Joe Win
  12. Sophien Kamoun  Is a corresponding author
  1. The Sainsbury Laboratory, University of East Anglia, United Kingdom
  2. Imperial College London, United Kingdom
Research Article
  • Cited 26
  • Views 3,687
  • Annotations
Cite this article as: eLife 2019;8:e49956 doi: 10.7554/eLife.49956

Abstract

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4—a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal a1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.

Article and author information

Author details

  1. Hiroaki Adachi

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7184-744X
  2. Mauricio Contreras

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  3. Adeline Harant

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  4. Chih-hang Wu

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Chih-hang Wu, SK, LD and CH-W filed a patent on NRCs.(WO/2019/108619).
  5. Lida Derevnina

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Lida Derevnina, SK, LD and CH-W filed a patent on NRCs. (WO/2019/108619).
  6. Toshiyuki Sakai

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  7. Cian Duggan

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7302-7472
  8. Eleonora Moratto

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Tolga O Bozkurt

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0507-6875
  10. Abbas Maqbool

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  11. Joe Win

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  12. Sophien Kamoun

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    For correspondence
    sophien.kamoun@tsl.ac.uk
    Competing interests
    Sophien Kamoun, SK, LD and CH-W filed a patent on NRCs. SK receives funding from industry on NLR biology.(WO/2019/108619).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0290-0315

Funding

Gatsby Charitable Foundation

  • Sophien Kamoun

Biotechnology and Biological Sciences Research Council

  • Sophien Kamoun

European Research Council

  • Sophien Kamoun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jian-Min Zhou, Chinese Academy of Sciences, China

Publication history

  1. Received: July 9, 2019
  2. Accepted: November 23, 2019
  3. Accepted Manuscript published: November 27, 2019 (version 1)
  4. Version of Record published: January 6, 2020 (version 2)

Copyright

© 2019, Adachi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,687
    Page views
  • 711
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Jernej Turnšek et al.
    Research Article

    Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.

    1. Genetics and Genomics
    2. Plant Biology
    Thierry Halter et al.
    Research Article Updated

    Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we demonstrate that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a transposable element (TE)-derived repeat embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.