1. Plant Biology
Download icon

An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species

  1. Hiroaki Adachi
  2. Mauricio Contreras
  3. Adeline Harant
  4. Chih-hang Wu
  5. Lida Derevnina
  6. Toshiyuki Sakai
  7. Cian Duggan
  8. Eleonora Moratto
  9. Tolga O Bozkurt
  10. Abbas Maqbool
  11. Joe Win
  12. Sophien Kamoun  Is a corresponding author
  1. The Sainsbury Laboratory, University of East Anglia, United Kingdom
  2. Imperial College London, United Kingdom
Research Article
  • Cited 12
  • Views 2,976
  • Annotations
Cite this article as: eLife 2019;8:e49956 doi: 10.7554/eLife.49956

Abstract

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4—a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal a1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.

Article and author information

Author details

  1. Hiroaki Adachi

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7184-744X
  2. Mauricio Contreras

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  3. Adeline Harant

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  4. Chih-hang Wu

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Chih-hang Wu, SK, LD and CH-W filed a patent on NRCs.(WO/2019/108619).
  5. Lida Derevnina

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Lida Derevnina, SK, LD and CH-W filed a patent on NRCs. (WO/2019/108619).
  6. Toshiyuki Sakai

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  7. Cian Duggan

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7302-7472
  8. Eleonora Moratto

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Tolga O Bozkurt

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0507-6875
  10. Abbas Maqbool

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  11. Joe Win

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  12. Sophien Kamoun

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    For correspondence
    sophien.kamoun@tsl.ac.uk
    Competing interests
    Sophien Kamoun, SK, LD and CH-W filed a patent on NRCs. SK receives funding from industry on NLR biology.(WO/2019/108619).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0290-0315

Funding

Gatsby Charitable Foundation

  • Sophien Kamoun

Biotechnology and Biological Sciences Research Council

  • Sophien Kamoun

European Research Council

  • Sophien Kamoun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jian-Min Zhou, Chinese Academy of Sciences, China

Publication history

  1. Received: July 9, 2019
  2. Accepted: November 23, 2019
  3. Accepted Manuscript published: November 27, 2019 (version 1)
  4. Version of Record published: January 6, 2020 (version 2)

Copyright

© 2019, Adachi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,976
    Page views
  • 607
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Plant Biology
    Kasey Markel

    In 2016 Gagliano et al. reported evidence for associative learning in plants (Gagliano et al., 2016). A subsequent attempt to replicate this finding by the present author was not successful (Markel, 2020). Gagliano et al. attribute this lack of replication to differences in the experimental set-ups used in the original work and the replication attempt (Gagliano et al., 2020). Here, based on a comparison of the two set-ups, I argue that these differences are unable to explain the lack of replication in Markel, 2020.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jo Hepworth et al.
    Research Article

    In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analyzing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLC haplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.