An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species

  1. Hiroaki Adachi
  2. Mauricio Contreras
  3. Adeline Harant
  4. Chih-hang Wu
  5. Lida Derevnina
  6. Toshiyuki Sakai
  7. Cian Duggan
  8. Eleonora Moratto
  9. Tolga O Bozkurt
  10. Abbas Maqbool
  11. Joe Win
  12. Sophien Kamoun  Is a corresponding author
  1. The Sainsbury Laboratory, University of East Anglia, United Kingdom
  2. Imperial College London, United Kingdom

Abstract

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4—a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal a1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.

Data availability

All sequence data used for bioinformatic and phylogenetic analyses are included in the manuscript and supporting files

The following previously published data sets were used

Article and author information

Author details

  1. Hiroaki Adachi

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7184-744X
  2. Mauricio Contreras

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  3. Adeline Harant

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  4. Chih-hang Wu

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Chih-hang Wu, SK, LD and CH-W filed a patent on NRCs.(WO/2019/108619).
  5. Lida Derevnina

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    Lida Derevnina, SK, LD and CH-W filed a patent on NRCs. (WO/2019/108619).
  6. Toshiyuki Sakai

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  7. Cian Duggan

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7302-7472
  8. Eleonora Moratto

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Tolga O Bozkurt

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0507-6875
  10. Abbas Maqbool

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  11. Joe Win

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  12. Sophien Kamoun

    The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
    For correspondence
    sophien.kamoun@tsl.ac.uk
    Competing interests
    Sophien Kamoun, SK, LD and CH-W filed a patent on NRCs. SK receives funding from industry on NLR biology.(WO/2019/108619).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0290-0315

Funding

Gatsby Charitable Foundation

  • Sophien Kamoun

Biotechnology and Biological Sciences Research Council

  • Sophien Kamoun

European Research Council

  • Sophien Kamoun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Adachi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,354
    views
  • 1,396
    downloads
  • 186
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroaki Adachi
  2. Mauricio Contreras
  3. Adeline Harant
  4. Chih-hang Wu
  5. Lida Derevnina
  6. Toshiyuki Sakai
  7. Cian Duggan
  8. Eleonora Moratto
  9. Tolga O Bozkurt
  10. Abbas Maqbool
  11. Joe Win
  12. Sophien Kamoun
(2019)
An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species
eLife 8:e49956.
https://doi.org/10.7554/eLife.49956

Share this article

https://doi.org/10.7554/eLife.49956

Further reading

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.

    1. Plant Biology
    Koji Kato, Yoshiki Nakajima ... Ryo Nagao
    Research Article

    Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.