Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade

Abstract

Coronaries are essential for myocardial growth and heart function. Notch is crucial for mouse embryonic angiogenesis, but its role in coronary development remains uncertain. We show Jag1, Dll4 and activated Notch1 receptor expression in sinus venosus (SV) endocardium. Endocardial Jag1 removal blocks SV capillary sprouting, while Dll4 inactivation stimulates excessive capillary growth, suggesting that ligand antagonism regulates coronary primary plexus formation. Later endothelial ligand removal, or forced expression of Dll4 or the glycosyltransferase Mfng, blocks coronary plexus remodeling, arterial differentiation, and perivascular cell maturation. Endocardial deletion of Efnb2 phenocopies the coronary arterial defects of Notch mutants. Angiogenic rescue experiments in ventricular explants, or in primary human endothelial cells, indicate that EphrinB2 is a critical effector of antagonistic Dll4 and Jag1 functions in arterial morphogenesis. Thus, coronary arterial precursors are specified in the SV prior to primary coronary plexus formation and subsequent arterial differentiation depends on a Dll4-Jag1-EphrinB2 signaling cascade.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE110614

The following data sets were generated

Article and author information

Author details

  1. Stanislao Igor Travisano

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Vera Lucia Oliveira

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Belén Prados

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Joquim Grego-Bessa

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0938-2346
  5. Rebeca Piñeiro-Sabarís

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanesa Bou

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Manuel J Gómez

    Bioinformatics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Fátima Sánchez-Cabo

    Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Donal MacGrogan

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    For correspondence
    dmacgrogan@cnic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-8422
  10. José Luis De La Pompa Mínguez

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    For correspondence
    jlpompa@cnic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6761-7265

Funding

Spanish Ministry of Science, Innovation and Universities (SAF2016-78370-R)

  • Joquim Grego-Bessa

Ministerio de Economía y Competitividad (CB16/11/00399)

  • José Luis De La Pompa Mínguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were approved by the CNIC Animal Experimentation Ethics Committee and by the Madrid regional government (Ref. PROEX 118/15). All animal procedures conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish law under Real Decreto 1201/2005.

Reviewing Editor

  1. Bin Zhou, Chinese Academy of Sciences, China

Publication history

  1. Received: July 5, 2019
  2. Accepted: December 1, 2019
  3. Accepted Manuscript published: December 2, 2019 (version 1)
  4. Accepted Manuscript updated: December 3, 2019 (version 2)
  5. Accepted Manuscript updated: December 4, 2019 (version 3)
  6. Version of Record published: December 17, 2019 (version 4)

Copyright

© 2019, Travisano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,923
    Page views
  • 237
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stanislao Igor Travisano
  2. Vera Lucia Oliveira
  3. Belén Prados
  4. Joquim Grego-Bessa
  5. Rebeca Piñeiro-Sabarís
  6. Vanesa Bou
  7. Manuel J Gómez
  8. Fátima Sánchez-Cabo
  9. Donal MacGrogan
  10. José Luis De La Pompa Mínguez
(2019)
Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade
eLife 8:e49977.
https://doi.org/10.7554/eLife.49977

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Alexandre P Thiery et al.
    Research Article Updated

    Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.

    1. Developmental Biology
    2. Evolutionary Biology
    Sophie Pantalacci
    Insight

    The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.