Abstract

Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Philippe Ganot

    Biochemistry and physiology, Centre Scientifique de Monaco, Monaco, Monaco
    For correspondence
    pganot@centrescientifique.mc
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1743-9709
  2. Eric Tambutté

    Biochemistry and physiology, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.
  3. Natacha Caminiti-Segonds

    Biochemistry and physiology, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaëlle Toullec

    Biochemistry and physiology, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.
  5. Denis Allemand

    Biochemistry and physiology, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvie Tambutté

    Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
    Competing interests
    The authors declare that no competing interests exist.

Funding

Government of the Principality of Monaco

  • Philippe Ganot
  • Eric Tambutté
  • Natacha Caminiti-Segonds
  • Gaëlle Toullec
  • Denis Allemand
  • Sylvie Tambutté

This work was supported by the Centre Scientifique de Monaco research program, funded by the Government of the Principality of Monaco.

Reviewing Editor

  1. María Isabel Geli, Institut de Biología Molecular de Barcelona (IBMB), Spain

Version history

  1. Received: July 8, 2019
  2. Accepted: February 8, 2020
  3. Accepted Manuscript published: February 10, 2020 (version 1)
  4. Version of Record published: February 20, 2020 (version 2)

Copyright

© 2020, Ganot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,953
    views
  • 270
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe Ganot
  2. Eric Tambutté
  3. Natacha Caminiti-Segonds
  4. Gaëlle Toullec
  5. Denis Allemand
  6. Sylvie Tambutté
(2020)
Ubiquitous macropinocytosis in anthozoans
eLife 9:e50022.
https://doi.org/10.7554/eLife.50022

Share this article

https://doi.org/10.7554/eLife.50022

Further reading

    1. Cancer Biology
    2. Cell Biology
    Mengya Zhao, Beiying Dai ... Yijun Chen
    Research Article

    Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.

    1. Cell Biology
    2. Genetics and Genomics
    Yangzi Zhao, Lijun Ren ... Zhukuan Cheng
    Research Article

    Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.