An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis

Abstract

During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.

Data availability

Sequencing data have been deposited in NCBI GEO under accession number GSE123047. All data generated or analysed during this study are included in the manuscript and supporting files

The following data sets were generated

Article and author information

Author details

  1. Melanie Laurin

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Nicholas C Gomez

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. John Levorse

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Ataman Sendoel

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Megan Sribour

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. Elaine Fuchs

    Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    For correspondence
    fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7198-3257

Funding

Howard Hughes Medical Institute

  • Elaine Fuchs

Canadian Institutes of Health Research

  • Melanie Laurin

Burroughs Wellcome Fund (Postdoctoral Enrichment Program Award)

  • Nicholas C Gomez

National Institutes of Health (Ruth L. Kirschstein National Research Service Award F32CA221353)

  • Nicholas C Gomez

Human Frontier Science Program

  • Ataman Sendoel

Marie Curie Foundation

  • Ataman Sendoel

Cancer Research Society

  • Melanie Laurin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maddy Parsons, King's College London, United Kingdom

Ethics

Animal experimentation: All mouse strains were housed in an AAALAC-accredited facility and experiments were conducted according to the Rockefeller University's Institutional Animal Care and Use Committee, and NIH guidelines for Animal Care and Use.All animal procedures used in this study are described in our #17020-H protocol named Lentiviral RNAi and Skin, which had been previously reviewed and approved by the Rockefeller University Institutional Animal Care and Use Committee (IACUC)

Version history

  1. Received: July 16, 2019
  2. Accepted: September 24, 2019
  3. Accepted Manuscript published: September 25, 2019 (version 1)
  4. Version of Record published: September 30, 2019 (version 2)

Copyright

© 2019, Laurin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,985
    views
  • 506
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melanie Laurin
  2. Nicholas C Gomez
  3. John Levorse
  4. Ataman Sendoel
  5. Megan Sribour
  6. Elaine Fuchs
(2019)
An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis
eLife 8:e50226.
https://doi.org/10.7554/eLife.50226

Share this article

https://doi.org/10.7554/eLife.50226

Further reading

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

    1. Developmental Biology
    2. Physics of Living Systems
    Raphaël Clément
    Insight

    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.