Estimating effectiveness of case-area targeted response interventions against cholera in Haiti

  1. Edwige Michel
  2. Jean Gaudart
  3. Samuel Beaulieu
  4. Gregory Bulit
  5. Martine Piarroux
  6. Jacques Boncy
  7. Patrick Dely
  8. Renaud Piarroux  Is a corresponding author
  9. Stanislas Rebaudet  Is a corresponding author
  1. Ministry of Public Health and Population, Haiti
  2. Aix Marseille University, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Biostatistics and ICT, France
  3. United Nations Children's Fund, Haiti
  4. Service de Santé des Armées, France
  5. Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, France
  6. APHM, Aix Marseille University, INSERM, IRD, Hôpital Européen, SESSTIM, France

Abstract

Case-area targeted interventions (CATIs) against cholera are conducted by rapid response teams, and may include various activities like water, sanitation, hygiene measures. However, their real-world effectiveness has never been established. We conducted a retrospective observational study in 2015-2017 in the Centre department of Haiti. Using cholera cases, stool cultures and CATI records, we identified 238 outbreaks that were responded to. After adjusting for potential confounders, we found that a prompt response could reduce the number of accumulated cases by 76% (95% confidence interval, 59 to 86) and the outbreak duration by 61% (41 to 75) when compared to a delayed response. An intense response could reduce the number of accumulated cases by 59% (11 to 81) and the outbreak duration by 73% (49 to 86) when compared to a weaker response. These results suggest that prompt and repeated CATIs were significantly effective at mitigating and shortening cholera outbreaks in Haiti.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 1 and 4.

Article and author information

Author details

  1. Edwige Michel

    Directorate of Epidemiology Laboratory and Research, Ministry of Public Health and Population, Delmas, Haiti
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean Gaudart

    Aix Marseille University, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Biostatistics and ICT, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9006-5729
  3. Samuel Beaulieu

    United Nations Children's Fund, Port-au-Prince, Haiti
    Competing interests
    The authors declare that no competing interests exist.
  4. Gregory Bulit

    United Nations Children's Fund, Port-au-Prince, Haiti
    Competing interests
    The authors declare that no competing interests exist.
  5. Martine Piarroux

    Centre d'Épidémiologie et de Santé Publique des Armées, Service de Santé des Armées, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacques Boncy

    National Laboratory of Public Health, Ministry of Public Health and Population, Port-au-Prince, Haiti
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Dely

    Directorate of Epidemiology Laboratory and Research, Ministry of Public Health and Population, Delmas, Haiti
    Competing interests
    The authors declare that no competing interests exist.
  8. Renaud Piarroux

    Service de Parasitologie Mycologie, Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
    For correspondence
    renaud.piarroux@aphp.fr
    Competing interests
    The authors declare that no competing interests exist.
  9. Stanislas Rebaudet

    APHM, Aix Marseille University, INSERM, IRD, Hôpital Européen, SESSTIM, Marseille, France
    For correspondence
    stanreb@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5099-1947

Funding

UNICEF

  • Samuel Beaulieu
  • Gregory Bulit
  • Stanislas Rebaudet

Assistance Publique - Hopitaux de Marseille

  • Stanislas Rebaudet

Assistance Publique - Hopitaux de Paris

  • Renaud Piarroux

The funders of this study (UNICEF, APHM, APHP) had staff (co-authors of this manuscript) who had a role in data collection, analyses and writing of the report. However, the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethics

Human subjects: All analyses retrospectively included routinely collected cholera surveillance and control data. The study protocol received authorization #1718-24 from the National Bioethics Committee of Haiti MSPP. The study only analysed anonymised data. Informed consent from patients and from people who benefited from a response intervention was therefore not required for this study.

Copyright

© 2019, Michel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,668
    views
  • 206
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edwige Michel
  2. Jean Gaudart
  3. Samuel Beaulieu
  4. Gregory Bulit
  5. Martine Piarroux
  6. Jacques Boncy
  7. Patrick Dely
  8. Renaud Piarroux
  9. Stanislas Rebaudet
(2019)
Estimating effectiveness of case-area targeted response interventions against cholera in Haiti
eLife 8:e50243.
https://doi.org/10.7554/eLife.50243

Share this article

https://doi.org/10.7554/eLife.50243

Further reading

    1. Cancer Biology
    2. Epidemiology and Global Health
    Chelsea L Hansen, Cécile Viboud, Lone Simonsen
    Research Article

    Cancer is considered a risk factor for COVID-19 mortality, yet several countries have reported that deaths with a primary code of cancer remained within historic levels during the COVID-19 pandemic. Here, we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US. We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer, diabetes, and Alzheimer’s. Any pandemic-related changes in coding practices should be eliminated by study of MC data. Nationally in 2020, MC cancer mortality rose by only 3% over a pre-pandemic baseline, corresponding to ~13,600 excess deaths. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematological, 2–7%) than cancers with a poor survival rate (lung and pancreatic, 0–1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). To understand these differences, we simulated the expected excess mortality for each condition using COVID-19 attack rates, life expectancy, population size, and mean age of individuals living with each condition. We find that the observed mortality differences are primarily explained by differences in life expectancy, with the risk of death from deadly cancers outcompeting the risk of death from COVID-19.

    1. Epidemiology and Global Health
    Jie Liang, Yang Pan ... Fanfan Zheng
    Research Article

    Background:

    The associations of age at diagnosis of breast cancer with incident myocardial infarction (MI) and heart failure (HF) remain unexamined. Addressing this problem could promote understanding of the cardiovascular impact of breast cancer.

    Methods:

    Data were obtained from the UK Biobank. Information on the diagnosis of breast cancer, MI, and HF was collected at baseline and follow-ups (median = 12.8 years). The propensity score matching method and Cox proportional hazards models were employed.

    Results:

    A total of 251,277 female participants (mean age: 56.8 ± 8.0 years), of whom 16,241 had breast cancer, were included. Among breast cancer participants, younger age at diagnosis (per 10-year decrease) was significantly associated with elevated risks of MI (hazard ratio [HR] = 1.36, 95% confidence interval [CI] 1.19–1.56, p<0.001) and HF (HR = 1.31, 95% CI 1.18–1.46, p<0.001). After propensity score matching, breast cancer patients with younger diagnosis age had significantly higher risks of MI and HF than controls without breast cancer.

    Conclusions:

    Younger age at diagnosis of breast cancer was associated with higher risks of incident MI and HF, underscoring the necessity to pay additional attention to the cardiovascular health of breast cancer patients diagnosed at younger age to conduct timely interventions to attenuate the subsequent risks of incident cardiovascular diseases.

    Funding:

    This study was supported by grants from the National Natural Science Foundation of China (82373665 and 81974490), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (2021-RC330-001), and the 2022 China Medical Board-open competition research grant (22-466).